Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Measurement And Their Errors

Name of the Student: Max. Marks : 22 Marks Tim				nute
Q1.				
	(a)	(i)	Describe how you would make a direct measurement of the emf ε of a cell, stating the type of meter you would use.	
				(1
		(ii)	Explain why this meter must have a very high resistance.	
	(b)	A s	tudent is provided with the circuit shown in the diagram below.	(1
	(-)			
		E	cell external resistor	
	in	ternal	resistance r	

The student wishes to determine the efficiency of this circuit.

In this circuit, useful power is dissipated in the external resistor. The total power input is the power produced by the battery.

The efficiency can be determined using two readings from a voltmeter.

(i) Show that the efficiency = $\frac{\underline{V}}{\varepsilon}$ where ε is the emf of the cell

(::\		4- 4-1
(ii)	Add a voltmeter to the diagram and explain how you would use this new circuit readings of $\ensuremath{\mathcal{E}}$ and V .	то таке
effici	cribe how you would obtain a set of readings to investigate the relationship betweency and the resistance of the external resistor. State any precautions you would re your readings were reliable.	een d take to
Stat	e and explain how you would expect the efficiency to vary as the value of R is in	creased.
Stat	e and explain how you would expect the efficiency to vary as the value of R is in	creased.
Stat	e and explain how you would expect the efficiency to vary as the value of R is in	creased.
Stat	e and explain how you would expect the efficiency to vary as the value of R is in	creased.

and V is the potential difference across the external resistor.

Q2.

Complete the following table by stating whether the quantity is a vector or a scalar and by giving the full name of its unit.

Quantity	Vector or Scalar	S.I. Unit
force	vector	newton
displacement		
kinetic energy		
power		

(Total 3 marks)

(2)

(3)

^	•
()	•
w	. D.

(a)	Starting with the relationship between impulse and the change in momentum, show clear	ırly
	that the unit, N, is equivalent to kg m s ⁻² .	

opposite direction			

(c) A rocket ejects 1.5×10^4 kg of waste gas per second. The gas is ejected with a speed of 2.4 km s⁻¹ relative to the rocket. Show that the average thrust on the rocket is about 40 MN.

Q4.

Complete the following table.

Quantity	Vector or Scalar	S.I. Unit
Displacement	Vector	m
Velocity		
Weight		
Energy		

(Total 3 marks)