Practice Question Set For A-Level

Subject : Physics

Paper-1 Topic: Waves

Max. Marks: 17 Marks Time: 17 Minutes

Mark Schemes

Q1.

(a) Speed = $3.0 \times 10^8/1.47$ = $2.0(4) \times 10^8 \text{ m s}^{-1}$

Do not accept 1 sf answer

(b) Critical angle calculation 🗸

 $\sin C = n_{\text{clad}}/n_{\text{core}} = 1.41/1.47 = 0.96$

critical angle = 73.6°

Angle of refraction calculation ✓

 $r = 90 - C = 16.4^{\circ}$

Do not give MP2 if calculated answer is given as A

Angle of incidence calculation \checkmark sin (i) = 1.47 sin (r)

 $i = 24.5^{\circ}$

Allow 2 sf answer; allow 24.6°

(c) Correct path of light drawn showing partial reflection and transmission of ray when it encounters the boundary ✓

Angle of incidence on core—cladding boundary decreases ✓

And will now be less than critical angle 🗸

(Some light will escape/be refracted into cladding

Some light will continue)

If the diagram is not annotated and no other mark is given, 1 mark can be given for correct description of partial reflection.

[7]

3

1

1

3

Q2.

(a) reads off $\lambda_{p,1}$

for ₁ ✓ condone POT;

expect $\lambda_p = 635 \pm 2 \; (nm) /$

 $635 \pm 0.02 \times 10^{-9} / 6.35 \pm 0.02 \times 10^{-7}$ (m)

allow evidence of working on Figure 1

use of $n \times \text{their } \lambda_p = d \sin \theta_2 \checkmark$

for 2 ✓ accept subject n with no / incomplete substitution, eg

$$N = \frac{\sin \theta}{n \times \lambda_{\rm p}}$$

OR

subject d and <u>full</u> substitution, eg

$$d = \frac{5 \times \text{their } \lambda_p}{\sin 76.3} / 5.15 \times \text{their } \lambda_p$$
 5.15 × their λ_p

OR

correct result $d = 3.27 (\times 10^{-6} (m));$

allow ECF in λ_n including POT;

allow recognisable d / 2 sf intermediate result

$$N = \left(= \frac{1}{d} = \frac{1}{3.27 \times 10^{-6}} \right) = 3.06 \times 10^5 \, \text{s}$$

for $_3 \checkmark$ accept ≥ 3 sf in range 3.05 to 3.07 \times 10⁵ OR

$$N = \frac{0.194}{their \, \lambda p}$$
 (allow ECF for λ_p out of range but not if due to POT)

(b) identifies an appropriate physical characteristic that makes the measurement of the (5th) maximum more difficult

take 'it' to be the 5th maximum / peak

(centre difficult to locate because)

(5th) 'maximum is wider' / 'peak less pronounced' / 'less defined' or wtte;

allow 'maximum more spread out' / 'less pronounced'

OR

maximum 'is fainter' / 'less bright' / 'intensity reduced';

reject 'not as clear'

0R

(cannot use edges to determine location of centre because)

'whole maximum (may be) not visible' / 'can't see edges'

OR

(L_R produces a range of wavelengths so)

4th and 5th / adjacent fringes may overlap

(c) extrapolation of linear region of the L_R characteristic ₁ ✓

for $_1$ \checkmark reads off where a ruled extrapolation to the linear region of the L_R characteristic reaches the horizontal axis

the line must be free from discontinuities; condone a ruled dashed line condone tangent meeting curve at $I \ge 10$ mA

 V_A for L_R in range 1.91 to 1.93 (V) $_2$

for ₂ ✓ > 3 sf acceptable if rounding to 3 sf

(d) any fully correct calculation of the Planck constant ₁ ✓ for ₁ ✓ allow 2 sf

2

1

3

1

use of $c=3(.00)\times 10^8$ AND $e=1.6(0)\times 10^{-19}$ AND EITHER V_A from (c) AND λ_p in range 620 to 650 nm / ECF their λ_p from (a) OR

 $V_A = 2.00 \text{ AND } \lambda_p \text{ in range 550 to 580 nm};$

calculates mean of two valid calculations of the Planck constant;

result in range 6.10 to 6.50 × 10^{-34} (J s) $_{2}$

for 2 ✓ Planck constant result rounding to correct 3 sf (check very carefully working leading to data booklet value 6.63 × 10⁻³⁴)

(e) V_F corresponding to I_F = 21 mA read from L_R graph in **Figure 3**;

use of $V_{\rm F}$ = 2.01 (V) leading to R = 195 (Ω) earns both marks

calculates
$$R$$
 from
$$\frac{6.1 - \text{their } V_{\text{F}}}{21(.0 \times 10^{-3})} \text{ }^{1} \checkmark$$

for $_{1}$ \checkmark accept evidence of working on **Figure 3** condone 2 sf eg V_{F} = 2.0 (V)

allow POT error for I_F

$$R = 195$$
 (Ω) from $\frac{6.10 - 2.01}{21(.0) \times 10^{-3}} = 195$ 2 195 2

for $_2$ \checkmark evidence to show use of $V_{\rm F}$ = 2.01 \pm 0.01 (V) must be seen, ie allow

$$\frac{6.10 - 2.00}{21(.0) \times 10^{-3}} = 195 \text{ OR} \frac{6.10 - 2.02}{21(.0) \times 10^{-3}} = 194$$

[10]

1

1

1