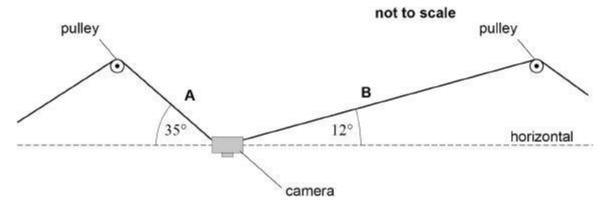
Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Waves



Name of the Student:	

Max. Marks : 22 Marks Time : 22 Minutes

Q1.

The diagram shows a camera filming a sports event from above. The position of the camera is controlled by two steel cables, **A** and **B**, that pass over fixed, smooth pulleys.

(a) In the diagram above the camera is stationary. The tension in **A** is 430 N and **A** makes an angle of 35° to the horizontal. **B** makes an angle of 12° to the horizontal.

Calculate the tension in **B**.

(2)

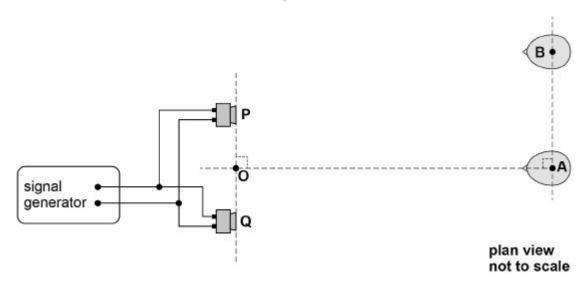
(b) The cross-sectional area of $\bf A$ is 7.0 \times 10⁻⁶ m². The unstretched length of $\bf A$ is 150 m.

Calculate the extension of A when the tension in it is 430 N.

Young modulus of steel = 210 GPa

			extension =	!!!
			stationary position. The	tension in A is
now different fron	_			
Deduce whether	the tension in A	has increased or decre	eased.	
The camera's sig	ınal is transmitte	d as a series of pulses	through an ontical fibr	e. The table
The camera's sig shows data for tw diameter.	vo optical fibres)	X and Y . Both optical fi	through an optical fibr	e. The table pt for their core
shows data for tw	Optical fibres	X and Y. Both optical fi Core diameter / μm	through an optical fibr	e. The table pt for their core
shows data for tw	Optical fibres X	X and Y. Both optical fi Core diameter / μm 8	through an optical fibr bres are identical exce	e. The table pt for their core
shows data for tw	Optical fibres	X and Y. Both optical fi Core diameter / μm	through an optical fibrobres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	X and Y. Both optical fi Core diameter / μm 8	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core
shows data for tw diameter.	Optical fibres X Y	Core diameter / µm 8 50	bres are identical exce	e. The table pt for their core

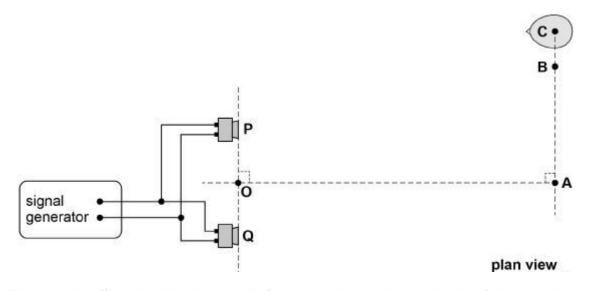
(2)


Q2.

(a)

A student investigates the interference of sound waves using two loudspeakers, **P** and **Q**, connected to a signal generator (oscillator). Each loudspeaker acts as a point source of sound.

Figure 1 shows the arrangement.


Explain why the two loudspeakers are coherent sources of sound waves.

Point **O** is the midpoint between **P** and **Q**.

He then moves to po As his head moves f	oint B , at right angles	to the line OA , still fude of the sound wa	at equal distances from acing the two loudspea ve he hears decreases
	iation in amplitude occ	-	•

The student records t	the following data:		
separation of the distance OA distance from A	ne two loudspeakers A to B	s = 0.30 m = 2.25 m = 0.95 m	
Show that the path di about 0.1 m.	ifference for the sou	und waves from the two loudspeak	ers to point B is
The frequency of the	sound wave is 296	60 Hz.	
Calculate the speed of	of sound from the s	tudent's data.	
		speed of sound =	m s ⁻

Figure 2

(3) (Total 12 marks)