Practice Question Set For A-Level

Subject : Physics

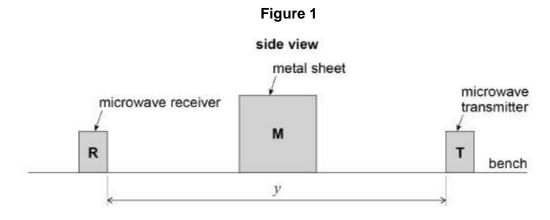
Paper-1 Topic: Waves

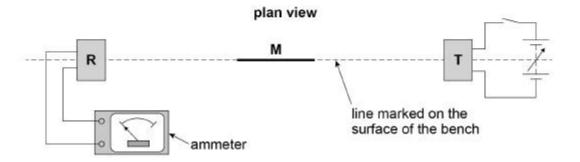
Name of the Student:

Max. Marks: 18 Marks

Time: 18 Minutes

Q1.

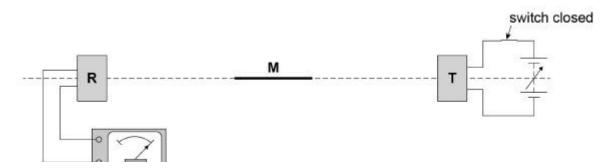

This question is about an experiment to measure the wavelength of microwaves.

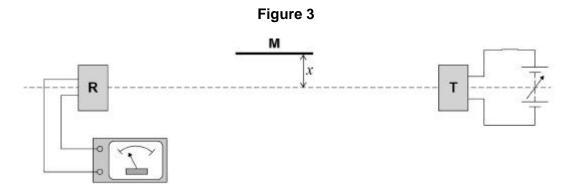

A microwave transmitter **T** and a receiver **R** are arranged on a line marked on the bench.

A metal sheet **M** is placed on the marked line perpendicular to the bench surface.

Figure 1 shows side and plan views of the arrangement.

The circuit connected to **T** and the ammeter connected to **R** are only shown in the plan view.




The distance y between ${\bf T}$ and ${\bf R}$ is recorded.

T is switched on and the output from T is adjusted so a reading is produced on the ammeter as shown in Figure 2.

Figure 2

M is kept parallel to the marked line and moved slowly away as shown in Figure 3.

The reading decreases to a minimum reading which is not zero.

The perpendicular distance x between the marked line and \mathbf{M} is recorded.

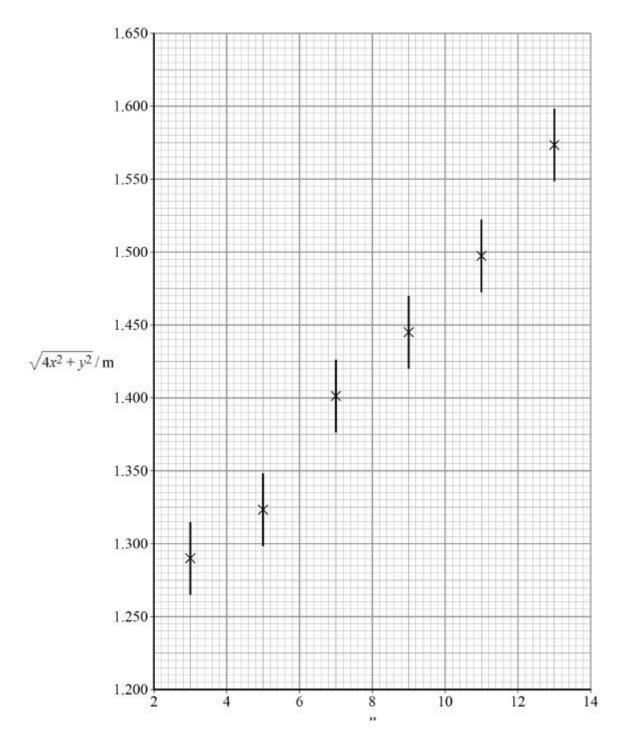
(a) The ammeter reading depends on the superposition of waves travelling directly to **R** and other waves that reach **R** after reflection from **M**.

State the phase difference between the sets of waves superposing at ${\bf R}$ when the ammeter reading is a **minimum**.

Give a suitable unit with your answer.

		(1
)	Explain why the minimum reading is not zero when the distance x is measured.	

(c) When **M** is moved further away the reading increases to a maximum then decreases to a minimum.


At the first minimum position, a student labels the minimum n=1 and records the value of x. The next minimum position is labelled n=2 and the new value of x is recorded. Several positions of maxima and minima are produced.

Describe a procedure that the student could use to make sure that \mathbf{M} is parallel to the marked line before measuring each value of x.

You may wish to include a sketch with your answer.

(1)

It can be shown that						
$n\lambda = \sqrt{4x^2 + y^2} - y$						
where λ is the wavelength of the microwaves and y is the distance defined in Figure 1 .						
The student plots the graph shown in Figure 4 .						
The student estimates the uncertainty in each value of $\sqrt{4x^2 + y^2}$ to be 0.025 m and adds error bars to the graph.						
Determine $ \hbox{ the maximum gradient G_{\max} of a line that passes through all the error bars} $ $ \hbox{ the minimum gradient G_{\min} of a line that passes through all the error bars}. $						
• the maximum gradient $G_{ exttt{max}}$ of a line that passes through all the error bars						
• the maximum gradient $G_{ exttt{max}}$ of a line that passes through all the error bars	_					
 the maximum gradient G_{\max} of a line that passes through all the error bars the minimum gradient G_{\min} of a line that passes through all the error bars. 						
the maximum gradient G_{\max} of a line that passes through all the error bars the minimum gradient G_{\min} of a line that passes through all the error bars. $G_{\max} = \underline{\hspace{2cm}}$						

(f) Determine the percentage uncertainty in your result for λ .

percentage uncertainty in λ = ______ %

(3)

(g) Explain how the graph in **Figure 4** can be used to obtain the value of y. You are **not** required to determine y.

 		 		(2)

(h) Suppose that the data for n = 13 had not been plotted on **Figure 4**.

Add a tick (\checkmark) in each row of the table to identify the effect, if any, on the results you would obtain for G_{max} , G_{min} , λ and y.

Result	Reduced	Not affected	increased
$G_{\sf max}$			
G_{min}			
λ			
у			

(4) (Total 18 marks)