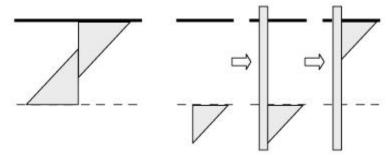
Practice Question Set For A-Level

align graph paper with TR 1 🗸

Subject: Physics


Paper-1 Topic: Waves

Name of			
Max. Ma	rks : 18 Marks	Time : 18 Minutes	
Mark Sch	nemes		
Q1.			
(a)	180 degrees		
	accept ° for degrees		
	OR		
	π radians 🗸		
	condone [°] or 'rad' for radian reject 'half a cycle'		
	treat ' π radians in phase' as talk out	1	
(b)	(idea that) sets of combining waves do not have the same amplitude		
	condone 'waves do not have same intensity' or 'same energy' or energy is absorbed on reflection' or 'same power' or 'same strended that non point source or non point receiver would lead to impose cancellation	igth' or	
	condone the idea that the waves may not be monochromatic		
	ignore 'some waves travel further' or 'waves do not perfectly ca out'	ncel	
	reject 'waves may not be 180° out of phase'	1	
(c)	valid use of a set square or protractor against TR (to ensure perpendicular) ₁ ✔		
	measure x at two <u>different</u> points [at each end of M] <u>and</u> adjust until [make sure] both <u>distances are the same</u> $_2$ \checkmark		
	OR		
	use of set square to align M with the perpendicular line earns 2		
	if method used does not allow <u>continuous</u> variation in <i>x</i> then award maximum 1 mark		
	OR		

align M with grid lines on graph paper 2 🗸

both marks can be earned for suitable sketch showing a viable procedure involving one or more recognisable set squares or protractors; the sketch may also show a recognisable ruler, eg

allow use of scale on set square to measure the perpendicular distances don't penalise incorrect reference to the set square, eg as 'triangular ruler', as long as the sketch shows a recognisable set square

(d) G_{max} line <u>ruled</u> through bottom of n = 3 error bar and through top of n = 11 error bar $1 \checkmark$

 G_{min} line <u>ruled</u> through top of n = 5 error bar and through bottom of n = 13 error bar ₂

 G_{max} and G_{min} calculated from valid y step divided by valid x step; both n steps $\geq 6_3$

allow 1 mm tolerance when judging intersection of gradient lines with error bars

ignore any unit given with G_{max} or G_{min} ; penalise power of ten error in 01.5

expect $G_{max} = 3.2(1) \times 10^{-2}$ and $G_{min} = 2.5 (2.49) \times 10^{-2}$

2

2(from _____ ax+G min, (e) AND result in range 2.8(0) to 2.9(0) \times 10⁻² (m) ₁ \checkmark ₂ \checkmark OR award one mark for 2.7(0) to $3.0(0) \times 10^{-2}$ (m) ₁₂ penalise 1 mark for a power of ten error reject 1 sf 3 × 10^{-2} (m) if a best fit line is drawn between the G_{max} and G_{min} lines and the gradient of this is calculated award 1 mark for λ in range 2.8(0) to 3.0(0) $\times 10^{-2} (m)$ 2 uncertainty in $\lambda = G_{max} - \lambda$ (f) OR $\lambda - G_{min}$ OR percentage uncertainty = (uncertainty/ λ)×100 ₂ \checkmark result in range 11(.0) % to 14(.0) % ₃ ✓ $_{1}$ can be earned by showing a valid uncertainty then dividing by λ ecf their λ , G_{max} and G_{min} for $_1$ \checkmark and $_2$ \checkmark allow λ found from best fit line $\operatorname{accept}\left(\frac{{}^{G}\operatorname{max}^{-}\lambda}{\lambda}\right) \times 100 \operatorname{or}\left(\frac{{}^{G}\operatorname{max} - {}^{G}\operatorname{min}}{{}^{G}\operatorname{max} + {}^{G}\operatorname{min}}\right) \times 100 \operatorname{etc} \operatorname{for}$ allow $\left(\frac{\Delta\lambda}{\lambda}\right)$ × 100 where $\Delta\lambda$ is any plausible uncertainty for $_2$ \checkmark numerical answer without valid working can only earn 3 🗸 3 (states) calculate the (vertical) intercept 1 🗸 (g) OR outlines a valid calculation method to calculate $y_1 \checkmark$ determine the intercept for both lines and calculate average value 2 🗸 OR determine the (vertical) intercept of the line of best fit (between G_{max}

2

(h)

result	reduced	not affected	increased
G_{max}		~	
G_{min}	~		
λ	✓		
У			/

general marker question

allow any distinguishing mark as long as only one per row

for **✓** and X in same row ignore X

for ✓ and ✓ in same row give no mark

ignore any crossed-out response

4

alternative approach: single best fit line drawn on Figure 4

(d) G calculated from y step divided by x step;

$$n$$
 step ≥ 6 $_3$ ✓

MAX 1

(e) λ in range 2.8(0) to 2.9(0) × 10₋₂ \checkmark

MAX 1

(f) percentage uncertainty in $\lambda = \left(\frac{\Delta \lambda}{\lambda}\right) \times 100$

AND

result in range 11(.0) % to 14(.0) % 🗸

MAX 1

(g) <u>calculate</u> intercept

OR

outlines a valid calculation method to find $y \checkmark$

MAX 1

(h) as main scheme

no ecf possible

4

alternative approach: non-crossing lines for G_{max} and G_{min} on **Figure 4**: includes lines that meet but do not cross

(d) G_{max} and G_{min} calculated from y step divided by x step; both n steps ≥ 6

MAX 1

(e) to (h) as main scheme

.

[18]