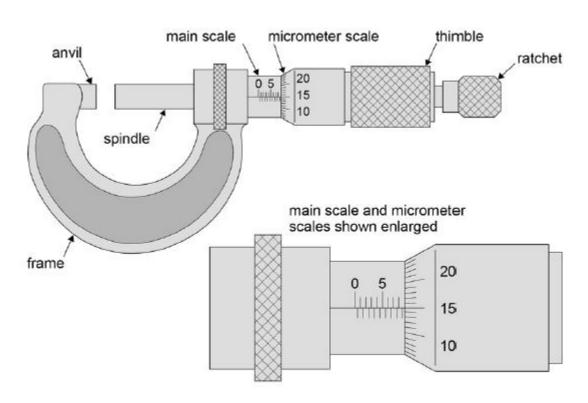
Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Electricity

Name of the Student:


Max. Marks : 22 Marks Time : 22 Minutes

Q1.

This question is about the determination of the resistivity of a wire.

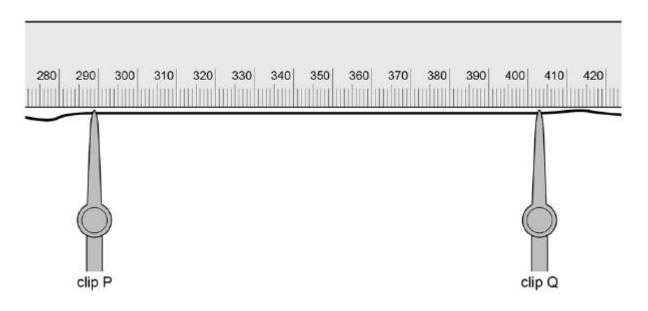
Figure 1 shows a micrometer screw gauge that is used to measure the diameter of the wire.

Figure 1

(a) State the resolution of the **main scale** on the micrometer in **Figure 1**.

resolution = _____mm

(1)


(b) Determine the distance between the anvil and the spindle of the micrometer in **Figure 1**. State any assumption you make.

(2)

(c) A student must also determine the length L of the wire between clips P and Q that will be connected into a circuit.

Figure 2 shows the metre ruler being used to measure L.

Figure 2

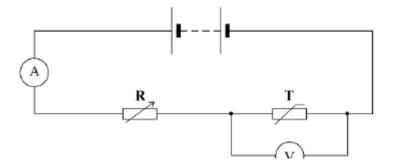
Determine L

 $L = \underline{\hspace{1cm}}$ mm (1)

(d) Calculate the percentage uncertainty in your result for L.

percentage uncertainty = _____ %

(e) State and explain what the student could have done to reduce uncertainty in the reading for L.


(2)

	L/cm	R/Ω	
	81.6	8.10	
	72.2	7.19	
	63.7	6.31	
	58.7	5.85	
	44.1	4.70	
Deter	mine the v	alue that the	tudent should record for the resistance per metre of the wire.
			tudent should record for the resistance per metre of the wire. ne table above to show how you arrived at your answer.
			ne table above to show how you arrived at your answer.
Use the	he additior	nal column in	ne table above to show how you arrived at your answer.
Use the Determinant	he addition	nal column in	ne table above to show how you arrived at your answer. $ \label{eq:continuous} $ resistance of one metre of wire = Ω
Use the Determinant	he addition	nal column in	ne table above to show how you arrived at your answer. $ \text{resistance of one metre of wire = } \underline{\hspace{2cm}} \Omega $ wire. Give a suitable unit for your answer.
Use the Determinant	he addition	nal column in	ne table above to show how you arrived at your answer. $ \text{resistance of one metre of wire = } \underline{\hspace{2cm}} \Omega $ wire. Give a suitable unit for your answer.
Use the Determinant	he addition	nal column in	ne table above to show how you arrived at your answer. $ \text{resistance of one metre of wire = } \underline{\hspace{2cm}} \Omega $ wire. Give a suitable unit for your answer.

Q2.

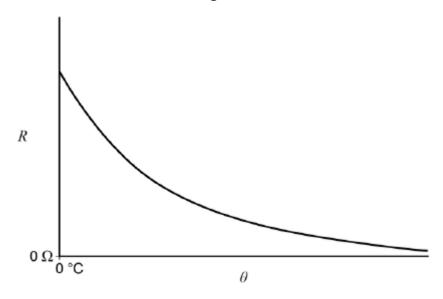

Figure 1 shows a circuit including a thermistor T in series with a variable resistor R. The battery has negligible internal resistance.

Figure 1

The resistance–temperature $(R-\theta)$ characteristic for **T** is shown in **Figure 2**.

Figure 2

(a)	The resistor and thermistor i	∩ Figure '	1 make up	a potential	divider.
-----	-------------------------------	-------------------	-----------	-------------	----------

Explain what is meant by a potential divider.

(b) State and explain what happens to the voltmeter reading when the resistance of ${\bf R}$ is increased while the temperature is kept constant.

(c) State and explain what happens to the ammeter reading when the temperature of the

(1)

(3)

	thermistor increases.	
		
		(2)
(d)	The battery has an emf of 12.0 V. At a temperature of 0 °C the resistance of the thermistor is 2.5 $10^3 \Omega$.	
	The voltmeter is replaced by an alarm that sounds when the voltage across it exceeds 3.0 V.	
	Calculate the resistance of R that would cause the alarm to sound when the temperature of the thermistor is lowered to 0 $^{\circ}$ C.	
	resistance = \square	
		(2)
(e)	State one change that you would make to the circuit so that instead of the alarm coming on when the temperature falls, it comes on when the temperature rises above a certain value.	
		(1)
	(Total 9 m	