Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Electricity

Name of the Student:

Max. Marks: 22 Marks Time: 22 Minutes

Mark Schemes

Q1.

- (a) 0.5 mm [0.05 cm, 0.0005 m]

 ✓ only acceptable answers
- (b) 8.65 mm [0.865 cm, 0.00865 m] $_{1}$

the micrometer reads zero when the jaws are closed ₂ only 3sf answers are acceptable for ₁ accept no <u>zero</u> error for ₂

(c)
$$L = (403 - 289 =) 114 \text{ mm } \checkmark$$

(d) absolute uncertainty = 1 mm ₁ ✓

percentage uncertainty =
$$\frac{1}{114}$$
 $\times 100 = 0.88\%2$ \checkmark accept 2 mm for ab. uncertainty $_{1}$ \checkmark allow ecf for wrong L and / or wrong ΔL accept 1.75%

- (e) should move wire directly over / closer to scale on the ruler to avoid <u>parallax</u> error

 ✓ both statement and explanation required for this mark
- (f) five values of R/L correct, recorded to 3 sf [last row to 3sf or 4sf]; accept values in Ω cm⁻¹ \checkmark mean based on <u>first four</u> rows only; result 9.94 Ω m⁻¹ [9.94 \times 10⁻² Ω cm⁻¹] \checkmark

L/cm	$R\!/\!\Omega$	(R/L) Ω m $^{-1}$
81.6	8.10	9.93
72.2	7.19	9.96
63.7	6.31	9.91
58.7	5.85	9.97

1

2

1

1

2

(g) cross-sectional area = $\frac{\pi a l^2}{4}$

resistivity from $\frac{R}{L} \times A$, correct substitution of result from 01.6 $_2 \checkmark$

$$1.10 \times 10^{-6}$$
3

 Ω m $_4$

resistivity from
$$\frac{R}{L} \times \frac{\pi d^2}{4}$$
 earns 12 \checkmark

allow $_2 \checkmark$ if $^{\frac{R}{L}}$ value is not based on mean or on a mean from all five rows of table in 01.6 condone 1.12 \times 10⁻⁶ for $_3 \checkmark$ if fifth row in 01.6 was not rejected

[13]

Q2.

 (a) A combination of resistors in series connected across a voltage source (to produce a required pd) ✓

Reference to splitting (not dividing) pd

withhold ₃ ✓ for POT error

1

(b) When R increases, pd across R increases ✓

Pd across R + pd across T = supply pd ✓

So pd across T / voltmeter reading decreases

*Alternative:

$$R_1 \times V_{tot}$$

Use of $V=R_1+R_2$

 V_{tot} and R_2 remain constant \checkmark

So V increases when R_1 increases \checkmark

3

(c) At higher temp, resistance of T is lower ✓

1

So circuit resistance is lower, so current / ammeter reading increases 🗸

1

(d) Resistance of T = 2500 Ω

(Allow alternative using $V_1/R_1 = V_2/R_2$)

pd across R = 12 - 3 = 9 VThe first mark is working out the current

1

Resistance of $R = V / I = 9 / 1.2 \times 10^{-3} = 7500 \,\Omega$ The second mark is for the final answer

1

(e) Connect the alarm across R instead of across Tallow: use a thermistor with a ptc instead of ntc.

Current through $T = V / R = 3 / 2500 = 1.2 \times 10^{-3} A$ \checkmark