Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: Further Mechanics

Name of the Student:			
Max. Marks : 26 Marks			Time : 26 Minutes
Mark Sch	neme	5	
Q1.			
(a)	$T = power/\omega$		
	Tord	que = 2500/0.47	
	532	0 N m value to 2 or more sf needed	3
(b)	(i)	Deceleration= 0.47/34= 0.0138 (rad s ⁻²)	
		moment of inertia = torque / angular deceleration = $5000/0.0138 = 3.57 \times 10^5$	
		kg m ² (Allow N m s ²) $3.8 \times 10^5 \text{ if } 5320 \text{ used}$	3
	(ii)	Suitable equation of motion used with correct data but omitted minus si	gn
		8.0 radian Allow (their $\omega/2\pi$)	
		1.27 revolutions Condone 1 revolution (allowed for thinking question refers to complete revolutions)	
		(3
(c)	(i)	$F = 65 \times 2.2 \times 0.47^2$	
		32(31.6 N)	2
	(ii)	Force produced by friction between the feet and the roundabout	
		Centripetal force has to act through the centre of mass of the operator or The resultant of the frictional force and normal reaction has to	
		pass through the centre of mass	

Any indication (eg on diagram) of wrong direction = 0

Ticks 4th box

(iii)

[14]

2

(a) (i) for one spring, change in force $\Delta F = k\Delta L = 30 \times 60 \times 10^{-3}$ = 1.8 (N) \checkmark resultant force (= [$F + \Delta F$] – [$F - \Delta F$]) = $2\Delta F \checkmark$ (= 3.6 N)

alternative using answer from (b) (ii)

$$a = (2\pi f)^2 x = (2\pi \times 1.38)^2 \times 60 \times 10^{-3} = 4.51 \text{ (m s}^{-2}) \text{ } \checkmark$$

resultant force = $ma = 0.80 \times 4.51 (= 3.6 \text{ N})$

(ii) acceleration a to the right \checkmark $\left(=\frac{F}{M}\right) = \frac{3.6}{0.8} = 4.5 \text{(m s}^{-2}\text{)} \checkmark$

alternative for first mark using answer from (b) (ii)

$$a = (2\pi f)^2 x = (2\pi \times 1.38)^2 \times 60 \times 10^{-3} = 4.5 \text{ (m s}^{-2}) \text{ } \checkmark$$

(b) (i) acceleration is proportional to displacement (from equilibrium position) ✓

acceleration is in opposite direction to displacement [or acceleration is towards a fixed point/equilibrium position] 🗸

(ii)
$$f = \frac{1}{2\pi} \sqrt{\frac{2 \times 30}{0.80}}$$
 $\checkmark = (1.38 \text{ Hz})$

period $T = \frac{1}{f} = \frac{1}{1.38}$ s \checkmark [ms]

(c) (i)
$$f = \left(= \frac{1}{2\pi} \sqrt{\frac{2k}{m}} \right) = \frac{1}{2\pi} \sqrt{\frac{2 \times 200}{1.0 \times 10^{-25}}} = 1.0(1) \times 10^{13}$$
 (Hz) \checkmark

(ii) $V_{\text{max}} (= 2\pi fA) = 2\pi \times 10^{13} \times 10^{-11} = 630 (628) \text{ (m s}^{-1}) \text{ } \checkmark$

(iii) $\max E_{K} (= \frac{1}{2} m v_{\text{max}}^{2}) = \frac{1}{2} \times 1.0 \times 10^{-25} \times 628^{2} = 2.0 \times 10^{-20} \text{ (J)} \text{ } \checkmark$ [or using $\frac{1}{2} kA^{2}$ approach]

[12]

2

2

2

3

1

1