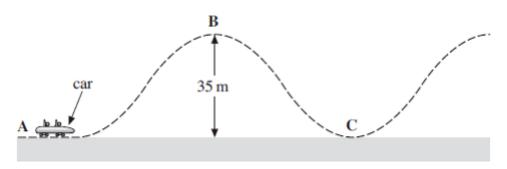
Practice Question Set For A-Level

Subject : Physics

Paper-1 Topic: Further Mechanics


		Student: 26 Marks	Time : 26	Minutes
		Il of mass 0.25 kg is swung round on the end of a string so that the ball mo I circle of radius 1.5 m. The ball travels at a constant speed of 8.6 m s ⁻¹ .	ves in a	
(a)	(i)	Calculate the angle, in degrees, through which the string turns in 0.40 s.		
		angle	degr	ree (3)
	(ii)	Calculate the tension in the string. You may assume that the string is horizontal.		
		tension		_ N
(b)		e string will break when the tension exceeds 60 N. culate the number of revolutions that the ball makes in one second when th	ne tension is	(2) 60
		number of revolutions		(2)

(c)	Discuss the motion of the ball in terms of the forces that act on it. In your answer you should:
	 explain how Newton's three laws of motion apply to its motion in a circle explain why, in practice, the string will not be horizontal.
	You may wish to draw a diagram to clarify your answer.

The quality of your written communication will be assessed in your answer.	
	<u></u>
	(6
	(Total 13 marks

Q2.

The figure below shows a car on a rollercoaster track. The car is initially at rest at **A** and is lifted to the highest point of the track, **B**, 35 m above **A**.

The car with its passengers has a total mass of 550 kg. It takes 25 s to lift the car from **A** to **B**. It then starts off with negligible velocity and moves unpowered along the track.

(a)	Calculate the power used in lifting the car and its passengers from A to B . Include an appropriate unit in your answer.

	power	unit
The speed reached by the ca	ar at C , the bottom of the first dip the first dip C is 63 m.	p, is 22 ms ⁻¹ . The length of the
Calculate the average resistiv	e force acting on the car during	the descent.
Give your answer to a numbe	er of significant figures consister	nt with the data.
	resistive for	 ce1
	e is unlikely to remain constant	
	·	
	·	
	·	
At C , a passenger of mass 58		
At C , a passenger of mass 58 speed is 22 ms ⁻¹ .	5 kg experiences an upward rea	
At C , a passenger of mass 58 speed is 22 ms ⁻¹ . Calculate the radius of curvatu	5 kg experiences an upward rea	action force of 2160 N when the

radius of curvature of the tra					rack m			m	
								(Tota	al 13 ma