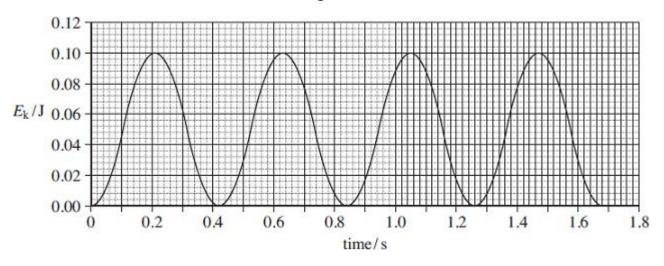
Practice Question Set For A-Level

Subject : Physics

Paper-1 Topic: Further Mechanics


Name of the Student:

Max. Marks: 17 Marks Time: 17 Minutes

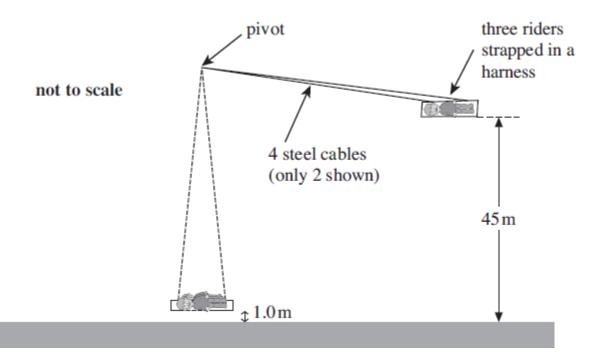
Q1.

(a) **Figure 1** shows how the kinetic energy, E_k , of an oscillating mass varies with time when it moves with simple harmonic motion.

Figure 1

(i) Determine the frequency of the oscillations of the mass.

frequency of oscillation _____ Hz


(2)

(ii) Sketch, on **Figure 1**, a graph showing how the potential energy of the mass varies with time during the first second.

(2)

(b) Figure 2 shows a ride called a 'jungle swing'.

Figure 2

The harness in which three riders are strapped is supported by 4 steel cables. An advert for the ride states that the riders will be released from a height of 45 m above the ground and will then swing with a period of 14.0 s. It states that they will be 1.0 m above the ground at the lowest point and that they will travel at speeds of 'up to 120 km per hour'.

(i) Treating the ride as a simple pendulum, show that the distance between the pivot and the centre of mass of the riders is about 49 m.

(ii) The riders and their harness have a total mass of 280 kg.

Calculate the tension in each cable at the lowest point of the ride, assuming that the riders pass through this point at a speed of 120 km h⁻¹. Assume that the cables have

negligible mass and are vertical at this point in the ride.

tension in each cable ______N

(2)

(iii)	Show that the maximum speed stated in the advert is an exaggerated claim. Assume that the riders are released from rest and neglect any effects of air resistance.	
(iv)	The riders lose 50% of the energy of the oscillation during each half oscillation. After one	(4)
(,	swing, the speed of the riders as they pass the lowest point is 20 m s ⁻¹ . Calculate the speed of the riders when they pass the lowest point, travelling in the same direction after two further complete oscillations.	
	speed of riders ms ⁻¹ (Total 17 mai	(3) ·ks)