Practice Question Set For A-Level

Subject : Physics

Paper-1 Topic: Further Mechanics

Name of the Student:				ne : 25 Minutes
Mark Schemes				
Q1. (a)	(i)	Maximum displacement (of carriage/pendulum from rest		
		position)	B1	1
	(ii)	6.0 (m)		
			B1	1
	(iii)	Clear evidence of what constitutes period		
			C1	
		4.8–4.9 (s)	A1	
(b)	(i)	Use of $v = 2\pi fA$		2
(b)	(i)	USE OF V = ZITIA	C1	
		7.07 (ms ⁻¹)		
			A1	2
	(ii)	Use of $a = 4\pi^2 f^2 A$		
			C1	
		11.1 (ms ⁻²) ecf	A1	
	/:::\	Substitution into or rearrangement of $T = 2\pi \sqrt{l/g}$		2
	(iii)	Substitution into or rearrangement or 7 – 211 \mathcal{V}/g	C1	
		3.98 (m)		
			A1	•

(c) Applied frequency = natural frequency

B1

Mention or clear description of resonance

B1

(d) Resistive/frictional/damping/air resistance forces

2

due to friction in named place (eg in bearings)/air resistance acting on named part (allow ride/gondola here)

Α1

C1

low friction/large mass or inertia /streamline/smooth surface etc.

В1

[15]

Q2.

(a) attractive **force** between point masses **(1)** proportional to (product of) the masses **(1)** inversely proportional to square of separation/distance apart **(1)**

3

3

(b)
$$m\omega^2 R = (-) \frac{GMm}{R^2} \left(\text{or} = \frac{mv^2}{R} \right)$$
 (1)

(use of
$$T = \frac{2\pi}{\omega}$$
 gives) $\frac{4\pi^2}{T^2} = \frac{GM}{R^3}$ (1)

G and M are constants, hence $T^2 \subset R^3$ (1)

3

(c) (i) (use of
$$T^2 \propto R^3$$
 gives) $\frac{365^2}{(1.50 \times 10^{11})^3} = \frac{T_m^2}{(5.79 \times 10^{10})^3}$ (1) $T_m = 87(.5)$ days (1)

(ii)
$$\frac{1^2}{(1.50 \times 10^{11})^3} = \frac{165^2}{R_N^3}$$
 (1) (gives $R_N = 4.52 \times 10^{12}$ m)

ratio =
$$\frac{4.51 \times 10^{12}}{1.50 \times 10^{11}} = 30(.1)$$
 (1)

[10]