Practice Question Set For A-Level

Subject : Physics

Paper-2 Topic: Thermal Physics

	the Student: rks : 20 Marks Tin	ne : 20 Minute	<u> </u>
Q1.			
(a)	Lead has a specific heat capacity of 130 J kg ⁻¹ K ⁻¹ .		
	Explain what is meant by this statement.	_	
		_	
			1)
(b)	Lead of mass 0.75 kg is heated from 21 $^{\circ}\text{C}$ to its melting point and continues to be h it has all melted.	eated until	
	Calculate how much energy is supplied to the lead. Give your answer to an appropriate number of significant figures.		
	melting point of lead = 327.5 °C specific latent heat of fusion of lead = 23 000 J kg ⁻¹		
	energy supplied		•
		() Total 4 marks)	3) s)

In stars, helium-3 and helium-4 are formed by the fusion of hydrogen nuclei. As the temperature rises, a helium-3 nucleus and a helium-4 nucleus can fuse to produce beryllium-7 with the release of energy in the form of gamma radiation.

The table below shows the masses of these nuclei.

Nucleus	Mass / u
Helium-3	3.01493
Helium-4	4.00151
Beryllium-7	7.01473

(a)	(i)	Calculate the energy released, in J, when a helium-3 nucleus fuses with a helium-4
		nucleus.

energy released _.	J	
		(4)

(ii) Assume that in each interaction the energy is released as a single gamma-ray photon.

Calculate the wavelength of the gamma radiation.

wavelength _	m	
G –		(3)

- (b) For a helium-3 nucleus and a helium-4 nucleus to fuse they need to be separated by no more than 3.5×10^{-15} m.
 - (i) Calculate the minimum total kinetic energy of the nuclei required for them to reach a separation of 3.5×10^{-15} m.

	total kinetic energy J
(ii)	Calculate the temperature at which two nuclei with the average kinetic energy for that temperature would be able to fuse. Assume that the two nuclei have equal kinetic energy.
	temperature K
read	temperature K entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place.
read	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be
reac raise	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place.
reac raise	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place. State two nuclei that are most likely to be used to form the plasma of a fusion reactor.
reac raise	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place. State two nuclei that are most likely to be used to form the plasma of a fusion reactor. 1
read raise (i)	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place. State two nuclei that are most likely to be used to form the plasma of a fusion reactor. 1
read raise (i)	entists continue to try to produce a viable fusion reactor to generate energy on Earth using ctors like the Joint European Torus (JET). The method requires a plasma that has to be ed to a suitable temperature for fusion to take place. State two nuclei that are most likely to be used to form the plasma of a fusion reactor. 1