Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Thermal Physics

Name of the Student:	

Max. Marks: 19 Marks Time: 19 Minutes

Mark Schemes

Q1.

(a) the number of atoms in 12g of carbon-12 or the number of particles / atoms / molecules in one mole of substance ✓ not − N_A quoted as a number

1

(b) (i) mean kinetic energy
$$(= 3 / 2 kT) = 3 / 2 \times 1.38 \times 10^{-23} \times (273 + 22)$$

= 6.1 × 10⁻²¹ (J) \checkmark
6 × 10⁻²¹ J is not given mark

1

(ii) mass of krypton atom = $0.084 / 6.02 \times 10^{+23} \checkmark$ $(= 1.4 \times 10^{-25} \text{ kg})$ c^2 (= 2 × mean kinetic energy / mass

=
$$2 \times 6.1 \times 10^{-21} / 1.4 \times 10^{-25}$$
)
= $8.7 - 8.8 \times 10^{4}$
 $\text{m}^2 \text{ s}^{-2} \text{ or J kg}^{-1}$

1st mark is for the substitution which will normally be seen within a larger calculation.

allow CE from (i)

working must be shown for a CE otherwise full marks can be given for correct answer only

no calculation marks if mass has a physics error i.e. no division by $N_{\scriptscriptstyle A}$ note for CE

answer = (i)
$$\times$$
 1.43 \times 10²⁵

3

(c) (at the same temperature) the mean kinetic energy is the same or

gases have equal
$$\frac{1}{2}mc_{rms}^2$$

mass is inversely proportional to mean square speed / m \propto 1 $\sqrt{c^2}$ \checkmark or mean square speed of krypton is less \checkmark

1st mark requires the word <u>mean / average</u> or equivalent in an algebraic term

2nd mark 'It' will be taken to mean krypton. So, 'It is less' can gain a mark allow 'heavier' to mean more massive'

allow vague statements like speed is less for 2nd mark but not in the first mark

2

2

2

1

```
Q2.
```

(a) the energy required to change the state of a unit mass of water to steam / gas ✓ when at its boiling point temperature / 100°C / without a change in temperature) ✓ allow 1 kg in place of unit allow liquid to vapour / gas without reference to water don't allow 'evaporation' in first mark

(b) (i) thermal energy given by copper block (= $mc\Delta T$) = 0.047 × 390 × (990 – 100) = 1.6 × 10⁴ (J) \checkmark 2 sig figs \checkmark

can gain full marks without showing working a negative answer is not given credit sig fig mark stands alone

(ii) thermal energy gained by water and copper container $(=mc\Delta T_{\text{water}} + mc\Delta T_{\text{copper}})$ = 0.050 × 4200 × (100 – 84) + 0.020 × 390 × (100 – 84) or = 3500 (J) \checkmark (3485 J) available heat energy (= 1.6 × 10⁴ – 3500) = 1.3 × 10⁴ (J) \checkmark allow both 12000 J and 13000 J allow CE from (i) working must be shown for a CE

allow CE from (i)
working must be shown for a CE
take care in awarding full marks for the final answer – missing out the
copper container may result in the correct answer but not be worth any
marks because of a physics error
(3485 is a mark in itself)
ignore sign of final answer in CE
(many CE's should result in a negative answer)

(iii) (using Q = ml) $m = 1.3 \times 10^4 / 2.3 \times 10^6$ = 0.0057 (kg) \checkmark Allow 0.006 but not 0.0060 (kg) allow CE from (ii) answers between 0.0052 \rightarrow 0.0057 kg resulting from use of 12000 and 13000 J

[7]

Q3.

(i) (heat supplied by glass = heat gained by cola) (use of $m_{\rm g}$ $c_{\rm g}$ $\Delta T_{\rm g}$ = $m_{\rm c}$ $c_{\rm c}$ $\Delta T_{\rm c}$)

1st mark for RHS or LHS of substituted equation

0.250 × 840 × (30.0 – $T_{\rm f}$) = 0.200 × 4190 × ($T_{\rm f}$ – 3.0) \checkmark 2nd mark for 8.4°C

```
(210 \times 30 - 210 t_f = 838 T_f - 838 \times 3)
Alternatives:
            8°C is substituted into equation (on either side shown will get mark) ✓
            resulting in 4620J~4190J ✓
            or
            8°C substituted into LHS \checkmark (produces \Delta T = 5.5°C and hence)
            = 8.5°C ~ 8°C ✓
            8°C substituted into RHS ✓
            (produces \Delta T = 20^{\circ}C and hence)
            = 10°C ~ 8°C ✓
                                                                                                    2
(heat gained by ice = heat lost by glass + heat lost by cola)
            NB correct answer does not necessarily get full marks
(heat gained by ice = mc\Delta T + mI)
heat gained by ice = m \times 4190 \times 3.0 + m \times 3.34 \times 10^5
(heat gained by ice = m \times 346600)
            3<sup>rd</sup> mark is only given if the previous 2 marks are awarded
heat lost by glass + heat lost by cola
= 0.250 \times 840 \times (8.41 - 3.0) + 0.200 \times 4190 \times (8.41 - 3.0)
(= 5670 J)
            (especially look for m \times 4190 \times 3.0)
            the first two marks are given for the formation of the substituted
            equation not the calculated values
m (=5670 / 346600) = 0.016 (kg)
            if 8°C is used the final answer is 0.015 kg
or (using cola returning to its original temperature)
(heat supplied by glass = heat gained by ice)
(heat gained by glass = 0.250 \times 840 \times (30.0 - 3.0))
heat gained by glass = 5670 (J) ✓
(heat used by ice = mc\Delta T + mI)
heat used by ice = m(4190 \times 3.0 + 3.34 \times 10^5) \checkmark (= m(346600))
m (=5670 / 346600) = 0.016 (kg)
                                                                                                    3
```

(ii)

[5]