Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Thermal Physics

ıx. Maı	'ks : 1	8 Marks	Time : 18 Minut
rock	s. The	ermal power station, water is pumped through pipes into an underground thermal energy of the rocks heats the water and turns it to steam at high a drives a turbine at the surface to produce electricity.	
(a)	Wates	er at 21°C is pumped into the hot rocks and steam at 100°C is produced at	a rate of 190 kg
	(i)	Show that the energy per second transferred from the hot rocks to the pathis process is at least 500 MW.	power station in
		specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$ specific latent heat of steam = $2.3 \times 10^6 \text{ J kg}^{-1}$	
	(ii)	The hot rocks are estimated to have a volume of 4.0×10^6 m ³ . Estimate temperature of these rocks in one day if thermal energy is removed from calculated in part (i) without any thermal energy gain from deeper under	them at the rate
		specific heat capacity of the rocks = $850 \text{ J kg}^{-1} \text{ K}^{-1}$ density of the rocks = 3200 kg m^{-3}	

(b) Geothermal energy originates as energy released in the radioactive decay of the

Calculate the mass of \$\frac{228}{92}\$ U that would release energy at a rate of 500 MW. half-life of \$\frac{228}{92}\$ U = 4.5 \times 10^9 years molar mass of \$\frac{228}{92}\$ U = 0.238 kg mol ⁻¹ (Total 1) Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 \times 10^5 J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of meltice rather than in a bucket of water at an initial temperature of 0 °C.	Calculate the m	e ⁹² U dee	ep inside the E	arth. Each nucle	us that decays	releases 4.2 MeV.
molar mass of \$\frac{238}{92}\$ U = 0.238 kg mol^-1 (Total 1) Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg^-1 K^-1 specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg^-1				lease energy at	a rate of 500 N	/IVV .
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$ specific latent heat of fusion of ice = $3.4 \times 10^5 \text{ J kg}^{-1}$	half-life of 92 l	J = 4.	5 × 10 ⁹ years			
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$ specific latent heat of fusion of ice = $3.4 \times 10^5 \text{ J kg}^{-1}$		238	000 1			
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar	molar mass of	92 U = 0.	238 kg moi			
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
Calculate the energy released when 1.5 kg of water at 18 °C cools to 0 °C and then freezes form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 × 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting the second can be cooled as the cooled and the cooled and the cooled are cooled as the cooled are cooled ar						
form ice, also at 0 °C. specific heat capacity of water = 4200 J kg ⁻¹ K ⁻¹ specific latent heat of fusion of ice = 3.4 x 10 ⁵ J kg ⁻¹ Explain why it is more effective to cool cans of drinks by placing them in a bucket full of melting them.						(Total 1
	Coloulate the	norgy rolog	and when 1 F l	ra of water at 19	°C apple to 0 °	C and then freezes
	form ice, also a specific heat ca	it 0 °C. apacity of wa	ater = 4200 J k	g ⁻¹ K ⁻¹	°C cools to 0 °	C and then freezes
	form ice, also a specific heat ca	it 0 °C. apacity of wa	ater = 4200 J k	g ⁻¹ K ⁻¹	°C cools to 0 °	C and then freezes
	form ice, also a specific heat ca	it 0 °C. apacity of wa	ater = 4200 J k	g ⁻¹ K ⁻¹	°C cools to 0 °	C and then freezes
	form ice, also a specific heat ca specific latent h	at 0 °C. apacity of waneat of fusion	ater = 4200 J k n of ice = 3.4 x	g ⁻¹ K ⁻¹ : 10 ⁵ J kg ⁻¹ ns of drinks by pl	acing them in a	
	form ice, also a specific heat ca specific latent h	at 0 °C. apacity of waneat of fusion	ater = 4200 J k n of ice = 3.4 x	g ⁻¹ K ⁻¹ : 10 ⁵ J kg ⁻¹ ns of drinks by pl	acing them in a	
	form ice, also a specific heat ca specific latent h	at 0 °C. apacity of waneat of fusion	ater = 4200 J k n of ice = 3.4 x	g ⁻¹ K ⁻¹ : 10 ⁵ J kg ⁻¹ ns of drinks by pl	acing them in a	
	form ice, also a specific heat ca specific latent h	at 0 °C. apacity of waneat of fusion	ater = 4200 J k n of ice = 3.4 x	g ⁻¹ K ⁻¹ : 10 ⁵ J kg ⁻¹ ns of drinks by pl	acing them in a	
(Total	form ice, also a specific heat ca specific latent h	at 0 °C. apacity of waneat of fusion	ater = 4200 J k n of ice = 3.4 x	g ⁻¹ K ⁻¹ : 10 ⁵ J kg ⁻¹ ns of drinks by pl	acing them in a	