Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Thermal Physics

lax. Mai	rks : 2	22 Marks Time : 22 Mi	nutes
Q1.			
(a)		gest two reasons why an α particle causes more ionisation than a β particle of the same at kinetic energy.	
	You	may be awarded marks for the quality of written communication in your answer.	
(b)	enei	adioactive source has an activity of 3.2×10^9 Bq and emits α particles, each with kinetic rgy of 5.2 Me V. The source is enclosed in a small aluminium container of mass 2.0×10^{-6} which absorbs the radiation completely.	(2)
	(i)	Calculate the energy, in J, absorbed from the source each second by the aluminium container.	
	(ii)	Estimate the temperature rise of the aluminium container in 1 minute , assuming no energy is lost from the aluminium.	
		specific heat capacity of aluminium = 900 J kg ⁻¹ K ⁻¹	

Q2.	\		
(a) (i)	One of the assumptions of the kinetic theory of gases is that molecules make <i>collisions</i> . State what is meant by an elastic collision.	elastic
	(ii)	State two more assumptions that are made in the kinetic theory of gases.	
(b		e mole of hydrogen at a temperature of 420 K is mixed with one mole of oxygen a	(3) at 320 K.
	Afte	r a short period of time the mixture is in thermal equilibrium.	
	(i)	Explain what happens as the two gases approach and then reach thermal equ	ilibrium.
	(ii)	Calculate the average kinetic energy of the hydrogen molecules before they armixed with the oxygen molecules.	е
			(4) (Total 7 marks)
Q3 . Δ	female i	runner of mass 60 kg generates thermal energy at a rate of 800 W.	
(a) Ass	suming that she loses no energy to the surroundings and that the average specificacity of her body is 3900 J kg ⁻¹ K ⁻¹ , calculate	c heat
	(i)	the thermal energy generated in one minute,	
	(ii)	the temperature rise of her body in one minute.	

In practice it is desirable for a runner to maintain a constant temperature. This rachieved partly by the evaporation of sweat. The runner in part (a) loses energy a Wby this process.	
Calculate the mass of sweat evaporated in one minute.	
specific latent heat of vaporisation of water = $2.3 \times 10^6 \text{ J kg}^{-1}$	
Explain why, when she stops running, her temperature is likely to fall.	