Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: Fields And Their Consequences(Gravitational Field)

Name of the Student:

Max. Marks : 26 Marks			Time : 26 Minutes	
Mark Schemes				
Q1.				
(a)	ma	ss depends only on the amount of matter present owtte		
			B1	
	grav	ght is force between body and Earth/depends on <i>g/mg/</i> vitational field strength or answers in terms of Newton's vitational law		
			B1	
		tc) varies at different points on and above the Earth or is erent on different planets etc		
			B1	3
(b)	(i)	reference is 'infinity' where potential is 0		
			B1	
		energy has to be put in/work has to be done to move mass to infinity or a bodies energy/PE decreases as a body moves from infinity towards the Earth		
			B1	2
	(ii)	need to show Vr to be constant, clear from algebra or final statement		_
			B1	
		two sets of data used correctly		
			B1	
		all three sets of data used correctly (4.02, 4.025, 4.028)		
			B1	3
	(iii)	energy change per kg = $(5.36 - 3.22) \times 10^7$ (J)		
			B1	

B1 2

(c) (i) $GMm/r^2 = mv^2/r \text{ or } v = (GM/r)$

C1

 $v^2 = 3.2 \times 10^7 \text{m}^2 \text{s}^{-2} \text{ or } v = 5670 \text{ ms}^{-1}$

C1

use of KE = $\frac{1}{2} mv^2$ using their v

C1

7.2 GJ

Α1

(ii) KE changes by 4.8 GJ (allow ecf, 12 – their ci)

B1

(iii) total energy (supplied) = (4.8) GJ (cnao)

(allow 5.2 GJ using 10 GJ for change in E_p) (allow variations due to rounding off if physics is correct in previous parts)

B1

[16]

Q2.

(a) (i) relationship between them is $E_p = mV$ (allow $\Delta E_p = m\Delta V$) [or V is energy per unit mass (or per kg)] (1)

1

1

1

(ii) value of E_p is doubled (1)

value of V is unchanged (1)

2

(b) (i) use of $V = -\frac{GM}{r}$ gives $r_A = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{12.0 \times 10^6}$ (1) $= 3.3(2) \times 10^7 \text{ (m) (1)}$

2

(ii) since
$$V \propto (-)\frac{1}{r} \left(\text{or } \frac{r_A}{r_B} = \frac{v_B}{v_A} = \frac{36.0}{12.0} = 3 \right) r_B = \frac{3.32 \times 10^7 \text{ m}}{3}$$
 (1)

(which is $\approx 1.1 \times 10^4$ km)

1

(iii) centripetal acceleration
$$g_{\rm B} = \frac{GM}{\pi^2} = \frac{6.67 \times 10^{-11} \times 5.98 \times 10^{24}}{(1.11 \times 10^7)^2}$$
 (1) [allow use of 1.1 × 10⁷ m from (b)(ii)]
$$= 3.2 \text{ (m s}^{-2}) \text{ (1)}$$

$$\frac{v_B}{m_B} g_B = \frac{36.0 \times 10^6}{4.44 \times 10^7}$$

[alternatively, since $g_{\rm B} = (-)^{\frac{\mathcal{V}_{\mathcal{B}}}{\mathcal{V}_{\mathcal{A}}}}$, $g_{\mathcal{B}} = \frac{36.0 \times 10^6}{1.11 \times 10^7}$ (1) = 3.2 (m s⁻²) (1)]

(iv) use of $\Delta E_p = m\Delta V$ gives $\Delta E_p = 330 \times (-12.0 - (-36.0)) \times 10^6$ (1) (which is 7.9×10^9 J or ≈ 8 GJ)

(c) g is not constant over the distance involved

(or g decreases as height increases or work done per metre decreases as height increases or field is radial and/or not uniform) (1)

[10]

2

1

1