Practice Question Set For A-Level

Subject: Physics

	rks : 20 Marks			Time : 20 Minutes
ene	alpha particle is moving toward ergy of 9.0 × 10 ⁻¹³ J when it is a e gold nucleus contains 79 prote	large distance from the go		as a kinetic
Wh	at is the closest possible distan	ace of approach of the alph	na particle to the gold n	ucleus?
Α	$2.5 \times 10^{-16} \mathrm{m}$	0		
В	$2.0 \times 10^{-14} \mathrm{m}$	0		
С	$4.0 \times 10^{-14} \mathrm{m}$	0		
D	$2.0 \times 10^{-7} \text{ m}$	0		
				(Total 1 mark)
Q2.				
Afte	er radioactive waste is removed s is to protect workers from the		often stored in undergi	round caves.
A	alpha particles from nuclides constant.	with a large decay	0	
В	alpha particles from nuclides constant.	with a small decay	0	
С	gamma radiation from nuclide constant.	es with a large decay	0	
D	gamma radiation from nuclide constant.	es with a small decay	0	
				(Total 1 mark)
Q3.				
Alp	na particle scattering can be de	emonstrated using a thin go	old foil.	
Wh	ich statement about this demor	nstration is not true?		
Α	The foil is thin enough to assuare deflected only once.	ume that alpha particles	0	
В	Nuclei are more massive than allows the alpha particles to b		0	

	90°.			
(articles deflected backwards is er that pass straight through the	0	
ı	Deflections of alpha parmuch smaller than defle	rticles by electrons in the foil are ections due to nuclei.		
				(Total 1 mark)
Q4.	ne random nature of radioa	active decay means that it is nev	er possible to predict	
,	A when a particular nucle	us will decay.	0	
I	B whether a β ⁻ particle or	a β ⁺ particle is emitted.	0	
(the approximate time ta to a specified value.	aken for the activity to decrease	0	
ı	the approximate thickness reduce the count rate to	ess of an absorber needed to a specified value.	0	
				(Total 1 mark)
Tł	ne thickness of the sheet is	e the thickness of an aluminium about 0.5 mm. ost appropriate for the measurer	·	
,	Α α	0		
I	Β β ⁻	0		
(C β ⁺	0		
I	Рγ	0		
				(Total 1 mark)
W	-	de used in 'Exit' signs. Ired the activity of the tritium in it the sign has an activity of 21 $\overline{ m MI}$	•	
W	hat will the activity be 15 y	vears after it was manufactured?		
,	A 12 MBq	0		
I	B 13 MBq	0		
(C 16 MBq	0		
ı	D 17 MBq	0		

Q7.

The mass of fuel in a nuclear reactor decreases at a rate of 4.0 \times 10⁻⁶ kg per hour.

What is the rate at which energy is transferred due to nuclear fission?

A $4.0 \times 10^7 \text{ W}$

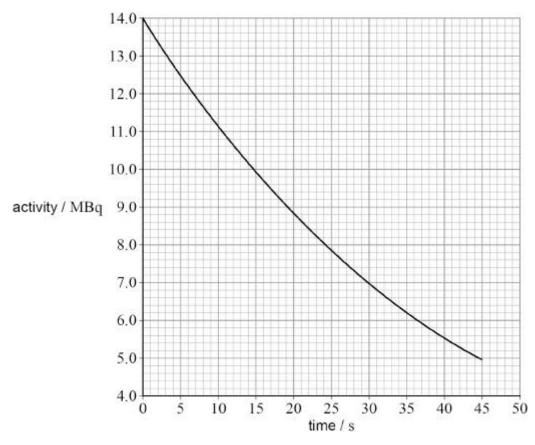
0

B $1.0 \times 10^8 \,\mathrm{W}$

0

C $6.0 \times 10^8 \,\mathrm{W}$

0


D $3.6 \times 10^{10} \, \mathrm{W}$

0

(Total 1 mark)

Q8.

The graph shows the variation of activity with time for a sample of a nuclide X.

What was the initial number of nuclei of **X** in the sample?

A 4.67×10^5

0

B 3.0×10^8

0

C 4.2×10^8

0

D 6.1×10^8

0

(Total 1 mark)

Q9.

Mhat was	doducod or	observed in	tha	Duthorford	ccattoring	experiment?
vviiai was	ucuuccu oi	ODSCIVED III	เมเษ	Numeriora	Scallelling	CYDCIIIICII(;

A All gold atoms are not alike.

0

B Alpha particles are helium nuclei.

0

 $\begin{tabular}{ll} \textbf{C} & \textbf{Some particles were deflected through angles greater} \\ & \textbf{than } 90^{\circ}. \end{tabular}$

0

D The motion of most alpha particles was reversed.

(Total 1 mark)

Q10.

Which row is correct for α , β and γ radiation?

		α	β	γ	
Α	Is it deflected by a magnetic field?	yes	yes	no	0
В	Is it deflected by an electric field?	yes	yes	yes	0
С	Does it have a positive charge?	yes	no	yes	0
D	Does it come from outside the nucleus?	no	yes	no	0

(Total 1 mark)

Q11.

A sample of radioactive material consists of $200~\mathrm{g}$ of nuclide **P** and $100~\mathrm{g}$ of nuclide **Q**.

Nuclide **P** has a half-life of 2 days and nuclide **Q** has a half-life of 4 days.

What is the total mass of nuclides **P** and **Q** after 12 days?

A 3.1 g

0

B 12.5 g

0

C 15.6 g

0

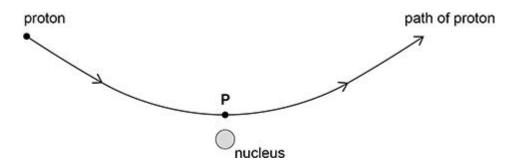
D 18.8 g

(Total 1 mark)

Q12.

A nuclide has a half-life of 10 ms.

The decay constant for this nuclide lies between


A 1 s^{-1} and 10 s^{-1} .

0

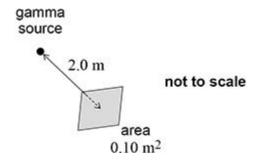
В	$10 \text{ s}^{-1} \text{ and } 10^2 \text{ s}^{-1}.$	
С	$10^2 \ s^{-1} \ \text{and} \ 10^3 \ s^{-1}.$	
D	$10^3~\mathrm{s^{-1}}$ and $10^6~\mathrm{s^{-1}}$.	
		(Total 1 mark)
Q13 .		
-	nich provides evidence for the existence of energy levels in nuclei?	
Α	the Rutherford alpha particle scattering experiment	
В	the existence of X-ray line spectra	
С	the existence of gamma radiation	
D	electron diffraction by crystals	
		(Total 1 mark)
Q14.		
•	nich is not true for gamma radiation?	
Α	It is more penetrating than alpha or beta radiation of the same energy through the same material.	
В	Its intensity is inversely proportional to the square of the distance from its source.	
С	It is emitted with discrete frequencies.	
D	When it is absorbed it makes the absorber radioactive.	
		(Total 1 mark)
Q15.		
ln a	a thermal reactor, induced fission occurs when a $^{235}_{92}\mathrm{U}$ nucleus captures a neutron.	
Wł	nich statement is true?	
Α	The moderator absorbs excess neutrons.	
В	A large number of neutrons should be produced per fission to sustain the reaction.	
С	Slow neutrons are required for this induced fission.	
D	The control rods slow down neutrons.	
		(Total 1 mark)
016 .		

The diagram shows the path of a proton being deflected by the nucleus of an atom.

Point **P** is the position of the proton when it is closest to the nucleus.

What is **not** true about the proton along its path at **P**?

Α	Its rate of change of momentum is at a minimum.	0


- **B** Its kinetic energy is at a minimum.
- C Its potential energy is at a maximum.
- **D** Its acceleration is at a maximum.

(Total 1 mark)

Q17.

The diagram shows an area of $0.10~\text{m}^2$ normal to a line connecting it to a point source of gamma radiation. The source emits photons uniformly in all directions.

The area and the source are separated by a distance of 2.0 m.

The source emits 5000 gamma photons per second.

How many photons pass through the area every second?

- **A** 500
- **B** 250
- C 10
- **D** 2.5

(Total 1 mark)

Q18.

X and **Y** are two radioactive nuclides. **X** has a half-life of 3.0 minutes and **Y** has a half-life of 9.0 minutes.

Two freshly prepared samples of **X** and **Y** start decaying at the same time. After 18 minutes the

Wh	at was the initia	al number of ra	dioactive nuclei in th	e sample of X	?	
Α	4 <i>N</i>	0				
В	16 <i>N</i>	0				
С	32 <i>N</i>	0				
D	64 <i>N</i>	0				
						(Total 1 mark
Q19.						
Wh	at is the main p	ourpose of a m	oderator in a therma	nuclear react	or?	
Α	to shield the s	surroundings fr	om ionising radiation	s o		
В	B to decrease the number of fission chain reactions					
С	C to decrease neutron speeds					
D	to prevent the	e core from ove	erheating	0		
						(Total 1 mark
nuc	lear reactions.		the mass of fuel decr	eases at a rate	e of 9.0 × 10 ^{−6} kg	hour ⁻¹ due to
Α	2.3 × 10 ⁸ W	Γ	0			
В	1.4 × 10 ¹¹ W		0			
С	8.1 × 10 ¹¹ W		0			
D	$2.9 \times 10^{15} \mathrm{W}$		0			
						(Total 1 mark

number of radioactive nuclei in both samples is the same. The sample of ${\bf Y}$ initially contained ${\cal N}$

radioactive nuclei.