Practice Question Set For A-Level

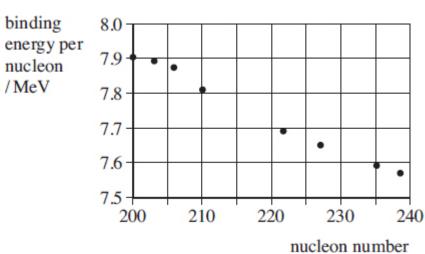
Subject: Physics

Mark	f the Student: arks : 17 Marks T		
		ibe the changes made inside a nuclear reactor to reduce its power output aress involved.	nd explain the
-			_
b)	State	the main source of the highly radioactive waste from a nuclear reactor.	
-			
	In a nuclear reactor, neutrons are released with high energies. The first few collision neutron with the moderator transfer sufficient energy to excite nuclei of the moderator		
((i)	Describe and explain the nature of the radiation that may be emitted from a nucleus of the moderator.	an excited
((ii)	The subsequent collisions of a neutron with the moderator are elastic.	
	` ,	Describe what happens to the neutrons as a result of these subsequent co the moderator.	llisions with

Q2.

The isotope of uranium, $^{238}_{92}$ U, decays into a stable isotope of lead, $^{206}_{82}$ Pb, by means of a series of α and β - decays.

(a) In this series of decays, α decay occurs 8 times and β^- decay occurs n times. Calculate n.


answer = ______ (1)

(b) (i) Explain what is meant by the binding energy of a nucleus.

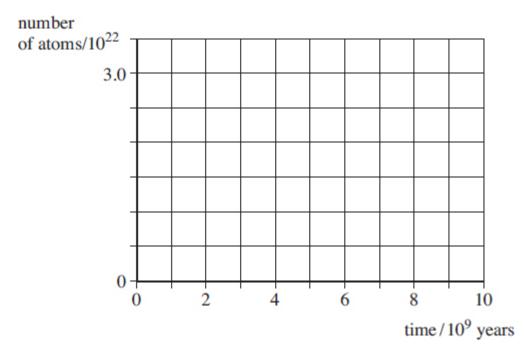
(2)

(ii) Figure 1 shows the binding energy per nucleon for some stable nuclides.

Figure 1

Use **Figure 1** to estimate the binding energy, in MeV, of the $\,^{^{206}Pb}_{82}$ nucleus.

(1)


(c) The half-life of $^{238}_{92}$ U is 4.5×10^9 years, which is much larger than all the other half-lives of the decays in the series.

A rock sample when formed originally contained 3.0 \times 10²² atoms of $^{238}_{92}$ U and no $^{206}_{82}$ Pb atoms.

At any given time most of the atoms are either $^{238}_{92}$ U or $^{206}_{82}$ Pb with a negligible number of atoms in other forms in the decay series.

(i) Sketch on **Figure 2** graphs to show how the number of $^{208}_{92}$ U atoms and the number of $^{208}_{82}$ Pb atoms in the rock sample vary over a period of 1.0 × 10¹⁰ years from its formation. Label your graphs U and Pb.

Figure 2

(2)

(ii) A certain time, t, after its formation the sample contained twice as many $^{238}_{92}$ U atoms as $^{206}_{82}$ Pb atoms.

Show that the number of 238 U atoms in the rock sample at time t was 2.0×10^{22} .

(3) (Total 10 marks)

(ii)	Calculate <i>t</i> in years.			

answer = _____ years