Practice Question Set For A-Level

Subject: Physics

		Student: 20 Marks		Time : 20 Minu		
The	table	shows the binding energy per	nucleon for two nuclei.			
		nucleus	binding energy per nucleon/10 ⁻¹² J			
		helium-4	1.1332417			
		beryllium-8	1.1314027			
(a)	(i)	Explain what is meant by the total binding energy of a nucleus.				
	(ii)	It is more usual to quote binding energies of nucleons in MeV rather than J. Calculate the total binding energy, in MeV, of a beryllium-8 nucleus.				
			binding energy	MeV		
(b)	(i)	Calculate the change in mas beryllium-8 nucleus.	ss that occurs when two helium-4 nuc	lei fuse to form a		
			mass change	kg		
	(ii)		ally separated by a large distance and clei become influenced by the strong foliations of 3.82 × 10 ⁻¹⁵ m.			

	kinetic energy	J	(3)		
(iii)	Explain why the kinetic energy calculated in part (b)(ii) will not enable the helium nuclei to fuse and produce a beryllium-8 nucleus.				
		_			
		_	40.		
		(Total 12 m	(3) arks)		

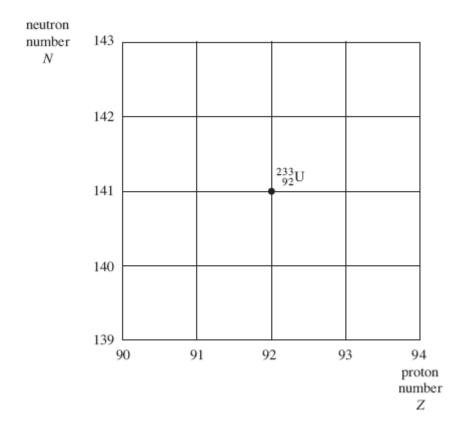
Q2.

The fissile isotope of uranium, 92 , has been used in some nuclear reactors. It is normally produced by neutron irradiation of thorium-232. An irradiated thorium nucleus emits a β^- particle to become an isotope of protactinium.

This isotope of protactinium may undergo β^- decay to become $\frac{^{233}}{^{92}}$.

(a) Complete the following equation to show the β^- decay of protactinium.

..... Pa
$$\rightarrow {}^{233}$$
U + β - +


(b) Two other nuclei, **P** and **Q**, can also decay into 233 \bigcup .

 $\mathbf{P} \text{ decays by } \mathbf{\beta}^{\scriptscriptstyle +} \text{ decay to produce } \overset{^{233}}{\overset{}{\cup}}.$

 ${\bf Q}$ decays by α emission to produce $\stackrel{233}{92}\bigcup$.

The figure below shows a grid of neutron number against proton number with the

On the grid label the positions of the nuclei P and Q.

(c) A typical fission reaction in the reactor is represented by

233
U $^{1}_{92}$ n $^{91}_{+0}$ Kr $^{139}_{-36}$ Ba $^{+}_{x}$ neutrons

(i) Calculate the number of neutrons, x.

answer = ____neutrons

(1)

(2)

(ii) Calculate the energy released, in MeV, in the fission reaction above.

mass of neutron = 1.00867 u
233
 L I

mass of
233
 U nucleus = 232.98915 u

mass of
$$^{91}_{36}$$
 Kr nucleus = 90.90368 u

mass of $^{139}_{56}$ Ba nucleus = 138.87810 u

answer =	MeV
	(3) (Total 8 marks)