Practice Question Set For A-Level

Subject: Physics

Max. Mark	ss: 18 Marks	Time : 18 Minutes
Q1.		
(²1H) a extrac	research into nuclear fusion one of the most promising reactions and tritium nuclei (3 H) in a gaseous plasma. Although deuterons sted from sea water, tritium is difficult to produce. It can, however,	s can be relatively easily
lithium	n-6 $\binom{6}{3}$ Li) with neutrons. The two reactions are summarised as:	
	${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n + energy$	
	${}_{3}^{6}\text{Li} + {}_{0}^{1}\text{n} \rightarrow {}_{1}^{3}\text{H} + {}_{2}^{4}\text{He}$ + energy	
ſ	Masses of reactants:	
	0^{1} n = 1.008665u	
	$_{1}^{2}H = 2.013553u$	
	$^{3}_{1}H = 3.016049u$	
	${}_{2}^{4}$ He = 4.002603u	
	⁶ ₃ Li = 6.015122u	
	1u is equivalent to 1.66 × 10 ⁻²⁷ kg or 931 MeV	
(a)	(i) Explain why the atomic mass unit, u, may be quoted in kg	or MeV.
		(2
((ii) Calculate the maximum amount of energy, in MeV, release bombarded by neutrons.	ed when 1.0 kg of lithium-6 is

	energy released	MeV
(iii)	Suggest why the lithium-6 reaction could be thought to be self-sustaining once deuteron-tritium reaction is underway.	the
(i)	In order to fuse, a deuteron and a tritium nucleus must approach one another to approximately 1.5 × 10 ⁻¹⁵ m. Calculate the minimum total initial kinetic energy that these nuclei must have.	o within
	minimum total kinetic energy of nuclei	J
(ii)	Show that a temperature of approximately 4 x 10 ⁹ K would be sufficient to enable fusion to occur in a gaseous plasma.	le this
