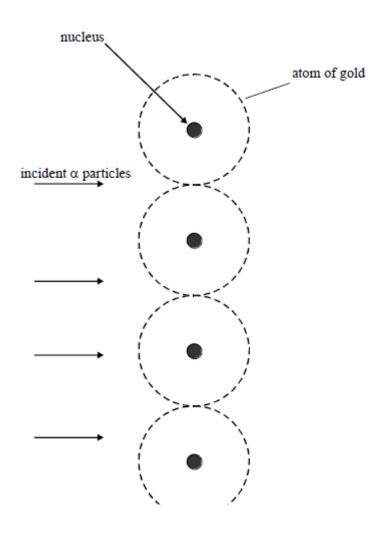
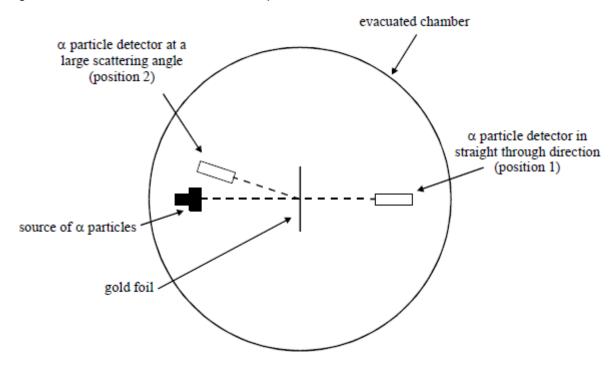
Practice Question Set For A-Level

Subject: Physics


Name of the Student:

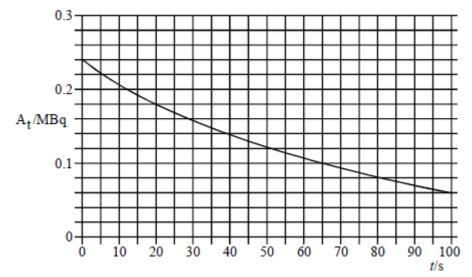
Max. Ma	rks:	23 Marks	Time : 23 Minutes
		am below shows the apparatus used to investigate Rutherford scattering, are fired at a gold foil.	in which $lpha$
(a)	Wh	chamber α source γ is it essential for there to be a vacuum in the chamber?	
(α)			
(b)		at observations made with this apparatus support each of the following co	onclusions?
	(i)	The nuclear radius of gold is much smaller than its atomic radius.	
	(ii)	Most of the mass of an atom of gold is contained in its nucleus.	
			(3)

(c) The drawing below shows α particles incident on a layer of atoms in a gold foil.


On this figure draw the complete path followed by **each** of the α particles shown.

(3) (Total 8 marks)

Q2.


The figure below represents an experiment on Rutherford scattering in which α particles are directed at a gold foil. The detector is shown in two positions in the evacuated chamber.

(a) Why is it necessary to remove the air from the apparatus?

Expla	ain why th	e gold foil	should be	e very thir	n.				
	ain why th	e count rat				n position 1			
What		educed fro	m this obs	servation	about the s	structure of	tne atom ar	na tne pro _l	perties
What	can be de		m this obs	servation	about the s	structure or	tne atom ar	na tne prop	perties

Q3.

- (a) Determine
 - (i) the half-life of the nuclide,

(ii) the decay constant,

	(iii)	the initial number of undecayed nuclei present at time $t = 0$.		
			_	
			_	(5)
(b)	Eac	ch decay releases 1.0×10^{-12} J. For the time interval between $t = 30$ s and $t = 80$ s	s, calculate	(3)
	(i)	the number of nuclei which decay,		
			_	
	(ii)	the energy released.		
			_	
			(Total 9 mar	(4) rks)