Practice Question Set For A-Level

Subject: Physics

(c)

Paper-3 Topic: Section A(Practical Skills Set-1)

мах. ма	rks : 26 Marks	Time : 26 Minu	tes
Q1.			
(a)	Describe the links between galaxies, black holes and quasars.		
			
			(2)
(b)	At a distance of 5.81 \times 10 ⁸ light year, Markarian-231 is the closest known quarthe red shift z of Markarian-231 is 0.0415	sar to the Earth.	
	Use these data to estimate an age, in seconds, of the Universe.		

A typical quasar is believed to be approximately the size of the solar system, with a power

output similar to that of a thousand galaxies.

-		_
-		
		_
_		_
_		_
-		
_		
-		_
-		
ler	nce to support the Big Bang theory comes from cosmological microwave backgroun	
th E	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe.	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	
l th	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
th:	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation
l th	e relative abundance of hydrogen and helium in the Universe. Explain what is meant by cosmological microwave background radiation and how its	d radiation

Q2.

Estimate, with reference to the inverse-square law, how much further the most distant visible

xplain how th	e relative abur	ndance of I	nydrogen	and helium	supports	the Big Bano	g theory.
							_
							_
							_
· · · · · · · · · · · · · · · · · · ·							

Q3.

This question is about an experiment to determine the internal resistance of a power supply.

A student is given the circuit and the four resistors of known resistance shown in Figure 1.

Figure 1

The student can change the external resistance R of the circuit between terminals \mathbf{X} and \mathbf{Y} . This is done by connecting different combinations of \mathbf{two} resistors in series or in parallel between \mathbf{X} and \mathbf{Y} . This method can produce 12 different values for R.

(a) Calculate the largest value of *R* that the student can obtain using **two** resistors.

largest value of $R = \underline{\hspace{1cm}} \Omega$

(Total 6 marks)

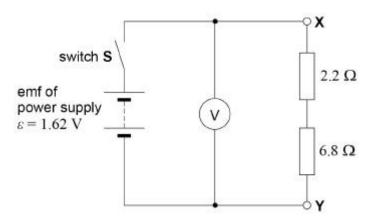
(b) Calculate the smallest value of R that the student can obtain using **two** resistors.

smallest value of $R =$	Ω

(2)

(c) With switch $\bf S$ closed (in the on position) and no resistors connected between $\bf X$ and $\bf Y$ the voltmeter reading V is 1.62 V.

The student concludes that this voltmeter reading equals the emf ε of the power supply.


State why the student's conclusion that ε = 1.62 V was correct.

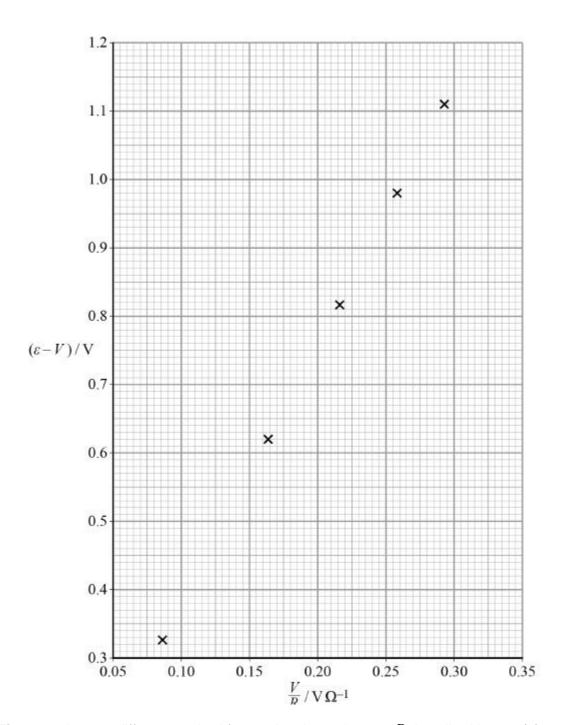
(1)

(d) **Figure 2** shows one particular combination and arrangement of two resistors that the student could use.

Figure 2

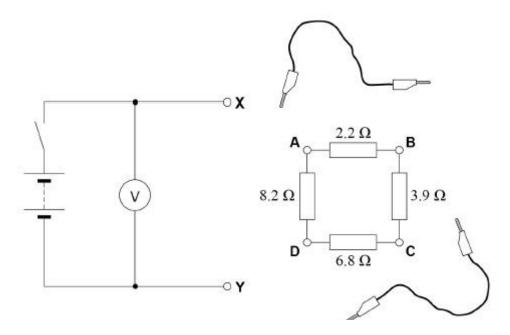
When **S** is closed the voltmeter reading V is 1.14 V.

Explain why V is less than 1.62 V when **S** is closed.



(1)

(e) It can be shown that


$$\varepsilon - V = r \times \frac{V}{R}$$

	where r is the internal resistance of the power supply.		
	Determine $(\varepsilon - V)$ and $\frac{\underline{V}}{R}$ for this circuit using the data given in part (d).		
	$(\varepsilon - V) = $	V	
	<u>v</u>		
	$\frac{V}{R}$ =	V Ω ⁻¹	(4)
			(1)
(f)	The student obtains values of V for five further different values of R .		
	These data were used to produce the graph of $(\varepsilon - V)$ against $\frac{V}{R}$ in Figure 3 .		
	Plot the point you determined in part (e) on Figure 3 and add a suitable best-fit line.		(1)
(a)	Use Figure 3 to determine r .		(.,
(g)	Ose i iguie 3 to determine /.		
	r =	Ω	
	· —		(2)
	Figure 3		

(h) **Figure 4** shows a different method for varying the resistance R described in part (a).

Figure 4

The four resistors are connected in a loop with sockets $\bf A$, $\bf B$, $\bf C$ and $\bf D$ at each junction. Two leads are used to connect the resistor loop to $\bf X$ and $\bf Y$.

Discuss whether this method is an improvement over the method described in part (•
answer, you should refer to the number of different values that can be obtained for	K.
	_
	_
	_
	_
	_
	_
	(2)