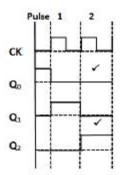
Practice Question Set For A-Level

Subject: Physics

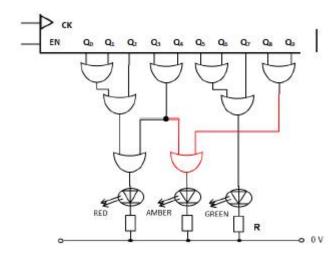
Paper-3 Topic: Section B (Section 13_ Electronics)


Name of	the Student:		
Max. Marks : 20 Marks			
Mark Sch	nemes		
Q1.			
(a)			
	comparator	~	
	differential amplifier		
	inverting amplifier		
	non-inverting amplifier		1
(b)	Photodiode current from	grap	1
	Allow \pm 5 μ A in reading from the graph		
	Voltage across resistor V_R $V_R = I \times R = 80 \times 10^{-6} \times 39 \times 10^3$ $V_R = 3.12 \text{ V}$		
	Allow a V_R = Voltage at non-inverting	pin (
	Allow a $V_{\scriptscriptstyle +}$ va	aiue	3
(c)	Voltage at inverting pin ($V->V+$ so output is low	•	
	First mark is	for	

Second mark is for correct application / conclusion using $V_{\scriptscriptstyle +}$ = 1.9 V

together with their value for (V-)

[6]


2

(a)

Flat line of Q_0 - 1 mark Correct fall of Q_1 and rise of Q_2 - 1 mark

2

(b)

Logic OR gate correctly connected in position for 1 mark

1

(c) The ON time for the green LED is determined by:

the frequency of the clock 🗸

the number of adjacent outputs that are OR'ed 🗸

Accept reference to the period of the clock pulse.

2

(d)
$$\mathbf{R} = V_R / I$$
; $\mathbf{R} = (9 - 2.1) \text{ V } \checkmark / 9 \text{ mA}$

$$R = 6.9 \text{ V} / 9 \text{ mA}$$
; $R = 767 \Omega$

Minimum resistor value that can be used in order not to exceed 9 mA is 767 Ω .

The 720 Ω resistor range is (684 to 756) Ω and falls below this value so should not be used. \checkmark

OR

Calculation using 720 Ω ±5% Resistor range = (684 to 756) Ω \checkmark leading to smallest current of 9.1 mA \checkmark

This current will exceed the permitted value of 9 mA. Don't use. 🗸

1 One mark for voltage across the resistor

²One mark for a suitable I-V-R calculation

 $_3$ One mark for conclusion with reason. Use of error range to give max resistance must be seen in either $_2$ or $_3$ for that mark to be awarded.

[8]

Q3.

(a) difference amplifier 🗸

1

3

(b) $V_{out} = (V_+ - V_-) \times (R_f / R_{in})$

$$V_{out} = (0 \text{ V} - 150 \text{ mV}) \times (1 \text{ M}\Omega / 100 \text{ k}\Omega)$$

$$V_{out} = -1.5 \text{ V}$$

1 mark for the correct resistor substitution / resistor ratio (10)

1 mark for -1.5 V (must have correct sign)

2

- (c) Signal 2 is subtracted from signal 1 by the difference amplifier 🗸
 - Noise is common to both so will be reduced / eliminated when subtracted 🗸
 - Signals will also be subtracted resulting in an addition (re-enforcement) of the signal.

 **Accept arguments based on the 'phase' relationship

[6]

3