Practice Question Set For A-Level

Subject: Physics

Name of the Student:_

Paper-3 Topic: Section B (Section 13_ Electronics)

Max. Marl	ks:	20 Marks	Time : 20 Minutes
proje	ct tha	iode is used to produce a stabilized 5.1 V from an unrego at requires 80 mA. a circuit is shown in the diagram.	ulated 12 V supply to power a
	+1	2 V O R	S
			project
		0 V ○ • Y	
(a)	Dra	w on the diagram the Zener diode connected correctly be	etween points $f X$ and $f Y$.
(b)	The	Zener diode requires at least 5 mA to maintain its Zener	
	(i)	Calculate the minimum current flowing through ${f R}$ when	n switch ${f S}$ is closed
	(ii)	Calculate the voltage across resistor ${f R}$ under these co	
	(iii)	Calculate the value of resistor ${f R}$.	

(2)

- (c) The circuit in the diagram above is now constructed using a value of 75 Ω for resistor \mathbf{R} .
 - (i) Show that the power dissipated in the resistor is approximately 0.6 W.

(ii) The project is disconnected by turning switch ${\bf S}$ off, but the 12 V supply remains connected.

Calculate the current that now flows through the Zener diode.					

(2) (Total 10 marks)

Q2.

An LDR is being used as a light sensor in a system that will switch on a porch light when it gets dark. The characteristic for the LDR is shown in **Figure 1**.

resistance ($k\Omega$)

light level (lux)

(a)	(i)	Explain how the use of the logarithmic scale in Figure 1 is helpful when displaying this characteristic.		
	(ii)	The LDR has a resistance of 60 $k\Omega$ when the light level causes the system to switch on the porch light.		
		State the value of this light level by reading from the graph in Figure 1 .		
		light level lux		
(b)	The	ure 2 shows the circuit for detecting the light level. design makes use of an op-amp acting as a comparator. d LED acts as an output indicator to aid testing of the detector circuit.		
		Figure 2		
(• +12 V		
	30 kΩ	\mathbf{R}_{1}		
	2	X • Y •		
		22 kΩ		
()	→ → → → ○ 0 V		
		on Figure 2 the connections from points ${\bf X}$ and ${\bf Y}$ to the op-amp inputs so that the red switches on when the light level falls below the required value.		
(c)	(i)	Calculate the voltage at point ${f X}$ when the red LED switches on.		
	(ii)	The reference voltage at $f Y$ is produced by two fixed-value resistors.		
		Calculate the value for resistor ${f R}_{\scriptscriptstyle 1}$ in order to achieve the required circuit operation.		

		(2)
(d)	The red LED was found to stay on dimly even when the light level was well above the value expected to switch it off.	
	Explain why this might happen and how the problem could be solved.	
		
		(3)

(Total 10 marks)