Practice Question Set For A-Level

Subject: Physics

Paper-3 Topic: Section B (Section 11_ Engineering Physics)

Merit Minds www.merit-minds.com		
Exam Preparation and Free Resources		

Name of the Student:	
Max. Marks: 26 Marks	Time : 26 Minutes

Mark Schemes

Q1.

(a)

Process 1	Process 2	
constant pressure	isothermal	
constant volume	adiabatic	
constant pressure	adiabatic	
constant volume	isothermal	V

Tick only in cell indicated.

1

(b) Attempt to apply $p_1V_1 = p_2V_2$ or $pV = \text{constant } \checkmark$ $(1.00 \times 10^{-4} + 2.80 \times 10^{-4} - V) \ 1.01 \times 10^5 = 1.83 \times 10^5 \times (2.80 \times 10^{-4} - V) \checkmark$ Leading to $V = 1.57 \times 10^{-4} \, \text{m}^3 \checkmark$

1st mark for equating pV before to pV after plunger pushed in - in words or symbols or numbers

2nd mark for correct substitution in **either** p_1V_1 **or** p_2V_2 **or** both 3rd mark for answer

3

(c) steeper curve ✓vertical line ✓(as shown alongside)

Allow vertical line that does not come right down to end of isothermal compression line

2

(d) (In isothermal process) (for internal energy to remain constant) energy transfer must take place ✓

If change is slow there is enough/sufficient time (for energy transfer) 🗸

Statements showing the First Law applied to an isothermal compression in symbols are not enough unless symbols are explained.

2

[8]

Q2.

(a) Work done 🗸

(b) The mark scheme gives some guidance as to what statements are expected to be seen in a 1 or 2 mark (L1), 3 or 4 mark (L2) and 5 or 6 mark (L3) answer. Guidance provided in section 3.10 of the 'Mark Scheme Instructions' document should be used to assist marking this question.

Mark	Criteria
6	There is a response to all 3 bullet points in the question. There is a good understanding of the function of a flywheel, and why the torque varies markedly in a diesel engine. Student can relate the answer to the two graphs.
	Includes 6 or more answer points from the list alongside
5	There is a response to all 3 bullet points in the question covering 6 answer points. Answers will not be as confident or detailed as for 6 marks, or answers may not be expressed using scientific terminology.
4	The student gives five or more answer points covering at least two of the bullet points.
3	At least four pertinent statements. They may show little understanding of the electric motor but should be able to give some reasons why a diesel engine needs a flywheel.
2	Two or three pertinent statements taken from the list of likely answer points.
1	One pertinent statement.
0	No sensible statements made.

Other sensible and applicable points can be accepted in lieu of any of those alongside. *Likely answer points:*

1st bullet

- 1. Electric motor's constant torque means smooth motion/doesn't need smoothing/doesn't need a flywheel
- 2. motor's output torque matches the described load

2nd bullet

- 3. relates force/pressure on piston to torque
- 4. force on piston varies over one cycle (as pressure in cylinder varies)
- 5. Torque = Fr and effective r varies as crank rotates
- 6. -ve torque: when work is being done on (the gas in) the engine (during induction, comp, exhaust strokes)
- 7. Zero torque when con rod and crank are in line/at top and bottom dead centres
- 8. This happens at crank angles which are multiples of π

3rd bullet

9. Diesel engine's (varying torque) will give uneven/jerky motion/cause stalling

- 10. Flywheel acts as energy store
- 11. Flywheel absorbs energy on power/expansion stroke
- 12. and gives up energy on other parts of cycle
- 13. Flywheel speeds up on expansion stroke
- 14. and slows down during other strokes.
- 15. The greater the M of I of flywheel, the smoother the motion
- 16. If no flywheel engine will stall/become very uneven/jerky
- 17. The greater the M of I of flywheel, the longer engine will take to speed up, slow down/stop
- 18. Because machine has low M of I it will not be able to store energy itself or smooth the motion.

[7]

6

Q3.

(a) 2.9 rev s⁻¹ equivalent = $2\pi \times 2.9 \text{ rad s}^{-1} = 8.2 \text{ rad s}^{-1}$

OR
$$I = 2 E_k / \omega^2$$

OR correct substitution in $E_k = \frac{1}{2} I \omega^2$

leading to $I = 6.2 \times 10^{-2} \text{ kg m}^2 \text{ }\checkmark$

1st mark for correct conversion rev s⁻¹ OR rearranging energy equation in terms of I OR correct substitution in $E_k = \frac{1}{2} I \omega^2$

2nd mark for correct answer.

Do not allow final answer to 1 sig fig e.g. 0.06

2

(b) I depends on how mass is distributed about axis (of rotation)

For arms, screw and punch same mass is/point masses are closer to axis than the steel balls (making M of I lower) 🗸

I depends on r^2 so I changes greatly for small change in in $r \checkmark$

Allow 'other parts' or 'other components' if it is clear this means screw, punch and arms

2

(c)
$$\alpha = \frac{2 \times \pi \times (0.2.9)}{0.089} = -205 \text{ rad s}^{-2}$$

Attempt to use $\omega_2^2 = \omega_1^2 + 2\alpha\theta$ or $\theta = \omega 1t + \frac{1}{2}\alpha t^2$

or
$$\theta = \frac{1}{2} (\omega_1 + \omega_2)t$$

giving
$$\theta$$
 = 0.81 rad \checkmark

Condone missing sign or α given as positive Accept 200 rad s $^{-2}$

If α positive, 2nd mark for attempt to use

$$\omega_2^2 = \omega_1^2 - 2\alpha\theta$$
 or $\theta = \omega_1 t - \frac{1}{2}\alpha t^2$

or
$$\theta = \frac{1}{2}(\omega_1 + \omega_2)t$$

ECF for value of ω used in (a)

3

Increasing y by 15% gives new $I=1.15^2\times \text{original }I$ (or 1.32) \checkmark Increasing R by 15% increases I by 1.15 3 (or 1.52) \checkmark Second option gives greater increase in I, and E_k also increased (by same ratio). \checkmark Accept answers without calculation: $I \text{ prop to } y^2 \checkmark$ $I \text{ prop to } R^3 \checkmark$ For $\underline{\text{same}}$ % increase in y or R, I and hence E_k increases more by increasing R \checkmark Note: $E_k = m \ r^2 \ \omega^2 = 4/3 \ \pi \ R^3 \ \rho \ r^2 \ \omega^2$ for each ball

(e) ✓ against N m s

[11]

3