Subject: Physics

Name of the Student:_____

Max. Marks: 20 Marks Time: 20 Minutes

Mark Schemes

Q1.

(a) (device in which) an input of work ✓

(causes) heat to transfer from a cold space / reservoir to a hot space / reservoir

**Answer must indicate that work is input OR done on working substance.

(b) Q_H is energy into the hot space / reservoir / space to be heated

(c)
$$0.5 = \frac{(T_H - T_C)}{T_H} \checkmark$$

$$COP_{HP} = \frac{T_H}{T_H - T_C} = \frac{1}{0.5} = 2$$

[5]

2

1

2

1

Q2.

(a) (Gravitational potential energy of falling mass) is converted to linear/translational ke of mass and rotational ke of wheel ✓

and internal energy in bearings / air around wheel 🗸

1

(b) (Use of
$$mgh = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 + T\theta$$
)
 $mgh = 2.94 J$

$$(0.200 \times 9.81 \times 1.50) = (0.5 \times 0.200 \times 2.22^2) + (0.5 \times 1 \times 6.73^2)$$

 $\frac{1}{2}mv^2 = 0.493 J$

$$+ (7.5 \times 10^{-3} \times 4.55)$$

 $T\theta = 0.0728 J$

 $E_P \operatorname{or} E_K \operatorname{correct} \checkmark$

If friction torque not worked out out, give up to max 2 marks. Give full marks if friction torque worked out and stated as negligible.

All E_P , E_K and $T\theta$ correct \checkmark

1

1

Leading to $I = 2.41(3) / 22.6 \checkmark (= 0.107 \text{ kg m}^2)$ Gives $I = 0.108 \text{ kg m}^2$ 1 $\alpha = T/I = 7.5 \times 10^{-3} / 0.107 = 0.0701 \text{ rad s}^{-2}$ (c) 1 substitution of $\omega_2 = 0$, $\omega_1 = 6.73$ and α into $\omega_2^2 = \omega_1^2 - 2\alpha\theta$ leading to θ = 323 rad \checkmark OR $\frac{1}{2}I\omega^2 = T\theta$ $0.5 \times 0.107 \times 6.73^2 = 7.5 \times 10^{-3} \theta$ θ = 323 rad \checkmark Give CE if $I = 0.108 \text{ kg } \text{m}^2 \text{ used}$ 1 Q3. The (total) angular momentum (of a system) remains constant provided no external torque (a) acts (on the system) 🗸 Do not accept 'force' in place of 'torque' 1 (b) *I* is the sum of the $m r^2$ products for point masses m at radius $r \checkmark$ Or WTTE Not m is the mass and r the radius – must refer to point or small masses or distribution of mass OR $\sum m r^2$ with m and r defined OR I is a measure of the mass and the way the mass is distributed about an axis 1 More of the satellite's mass is at greater radius ✓ 1 (Small change in r) gives large change in r^2 , hence large change in I OR even though m of panels is small, much of m is at a greater radius and radius is squared 🗸 For 2^{nd} mark must refer to effect of r^2 . 1 Angular momentum = $110 \times 5.2 = 572$ \checkmark (c) 1 N m s **OR** kg m^2 s⁻¹ \checkmark

[7]

1

(d) (Use of conservation of ang momtm) 572 = 230 × $\omega_{\rm 2}$ \checkmark

1

1

 $\omega_2 = 572 / 230 = 2.49 \text{ rad s}^{-1} \checkmark$

[8]