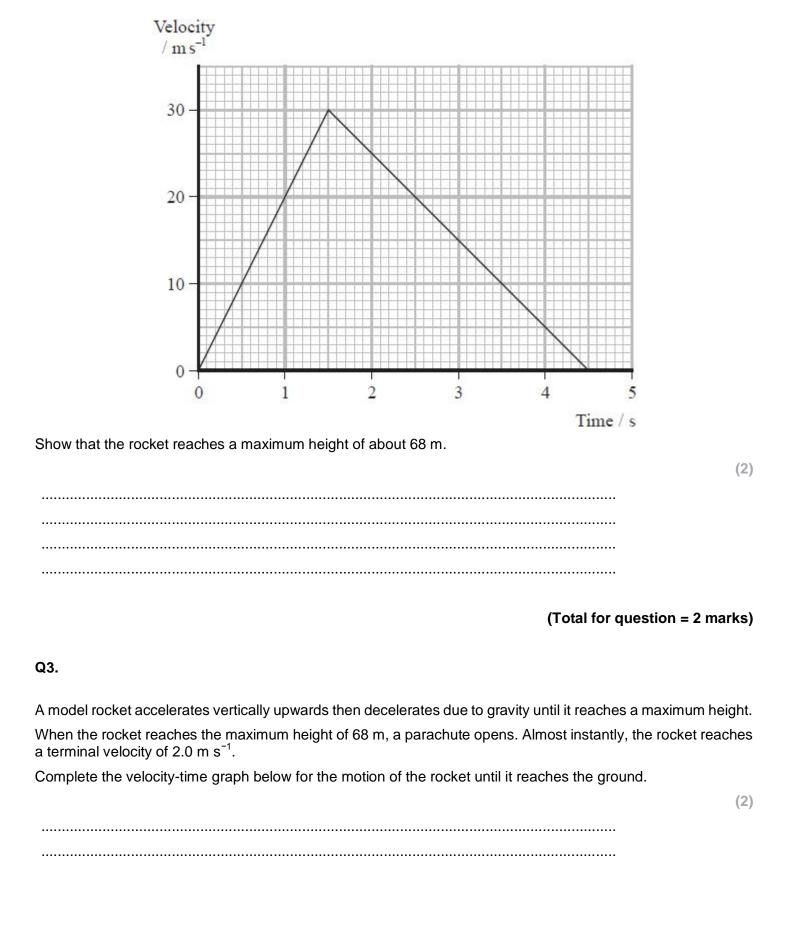
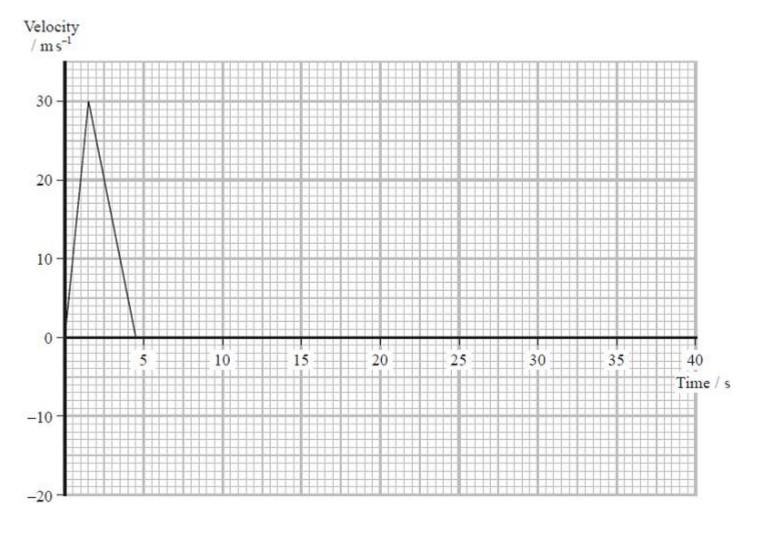
Practice Question Set For A-Level

Subject: Physics

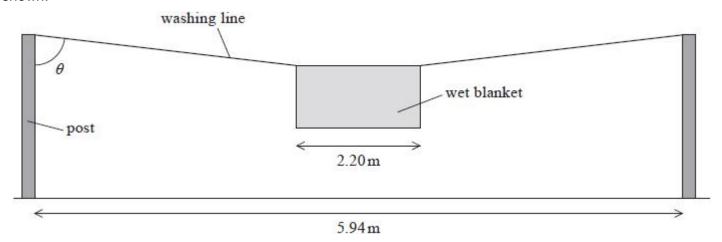

Paper-1 Topic : 2 (Mechanics)



Name of the Student:		
Max. Marks : 18 Marks	Time : 18 Minutes	
Q1.		
An electrical conductor XY carries a current <i>I</i> as shown.		
$X \xrightarrow{I} Y$		
$j = \frac{I}{A}$ The current density j is defined as	e conductor.	
Current density is a vector quantity.		
State what is meant by a vector quantity.		
	(1)	
(Tot	tal for question = 1 mark)	

Q2.

A model rocket accelerates vertically upwards then decelerates due to gravity until it reaches a maximum height. A velocity-time graph for the rocket until it reaches maximum height is shown.



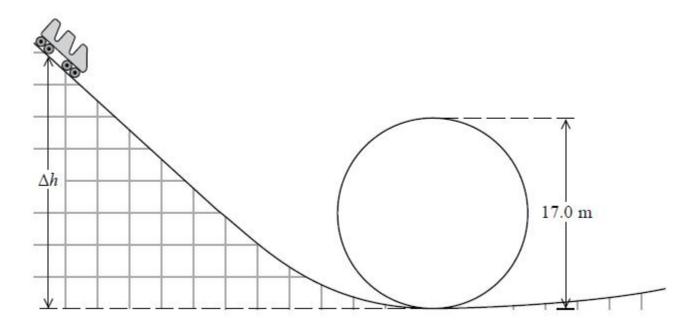
(Total for question = 2 marks)

Q4.

A washing line is attached to two posts which are a distance 5.94 m apart. A wet blanket of width 2.20 m is hung from the centre of the washing line. The washing line stretches to a length of 6.06 m and hangs at an angle θ , as shown.

Calculate the tension in the washing line.

mass of wet blanket = 9.36 kg


(4)

	Tension =
	(Total for question = 4 marks)
Q5.	isk one a distance 5.04 se or at A weeth lead of width 0.00 se is how
	ich are a distance 5.94 m apart. A wet blanket of width 2.20 m is hung ashing line stretches to a length of 6.06 m and hangs at an angle θ , as
washing line	
θ	wet blanket
post	<u>←</u>
	2.20 m
<	5.94m
Explain what happens to the height of the make reference to the Young modulus of t	blanket from the ground as the blanket dries. Your answer should
	(5)

(Total for question = 5 marks)

Q6.

The diagram shows the carriage of a rollercoaster about to enter a vertical loop of diameter 17.0 m. The carriage is initially at rest at a height Δh above the bottom of the loop.

(i) So that a passenger remains in contact with their seat at the top of the ride, show that the minimum speed of the car at the top of the loop is 9.1 m s ⁻¹ .
(3)
(ii) Calculate the minimum value of Δh that will enable the passenger to remain in contact with their seat at the top of the loop.
(3)
Λ 6

(Total for question = 4 marks)