Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:_____

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	Answer			Additional Guidance	Mark
(i)	• Use of $v^2 = u^2 + 2as$ Or	(1)	Accept use of $F = \frac{\Delta mv}{t}$	4
	Use of $E_k = \frac{1}{2}mv^2$ and $\Delta E_{grav} = \frac{\Delta v}{\Delta t}$ and use of $E_{grav} = \frac{\Delta v}{\Delta t}$		1)	Example of calculation $v^2 = 2 \times 9.81 \text{ m s}^{-1} \times 1.6 \text{ m}$ $v = 5.6 \text{ m s}^{-1}$	
	• Force from ground = required Force + weight	(1)	$a = \frac{5.6 \text{ m s}^{-1}}{0.9} = 6.2 \text{ m s}^{-2}$	
	• 1041 N	(1)	$F = 65 \text{ N} \times 6.2 \text{ m s}^{-2} = 403 \text{ N}$ Force from ground = $403 \text{ N} + (65 \text{ kg} \times 9.81 \text{ N kg}^{-1})$ = 1040.65 N	
(ii)	bending knees increases the time to come to rest	(1)		Accept converse argument	3
	decreasing rate of change of momentum or reducing	(1)			
	• and (hence) force	(1)		PE	

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
(i)	• Use of $\Delta W = F \Delta s$ (1) and $P = W/t$ • Use of $F = ma$ (1) • $a = 0.31 \text{ m s}^{-2}$ (1)	Example of calculation: In 1 second $W = F \Delta s$ $4500 \text{ W} = F \times 34 \text{ m s}^{-1}$ Force applied by motor = 132 N $F = ma$ $132 \text{ N} = 420 \text{ kg} \times a$ $a = 0.31 \text{ m s}^{-2}$	3
(ii)	Neglect friction forces (1) when it starts from rest Or Motor/Driving force independent of speed	Do not accept "force" without a description	1

Q3.

Question Number	Answer			Additional Guidance	
	•	Use of $p = mv$ Use of momentum conservation $v = 4.1 \text{ m s}^{-1}$	(1) (1) (1)	Example of calculation $p_i = (66 + 52) \text{ kg} \times 5.6 \text{ m s}^{-1}$ $p_f = (66 \text{ kg})v + (52 \text{ kg} \times 7.5 \text{ m s}^{-1})$ $v = \frac{(661 - 390) \text{ kg m s}^{-1}}{66 \text{ kg}} = 4.11 \text{ m s}^{-1}$	3

Q4.

Question Number	Answer				
	Use of $W = VIt$	(1)			
	$W = 69\ 000\ (J)$	(1)			
	Use of efficiency = (useful energy / total energy) (x 100%)	(1)			
	Efficiency = 0.42 (or 42%)	(1)			
	Or				
	Use of $P = IV$	(1)			
	Use of $P = W/t$ (to calculate rate of increase of internal energy of water)	(1)			
	Use of efficiency = (output power / input power) (x 100%)	(1)			
	Efficiency = 0.42 (or 42%)	(1)	4		
	Example of calculation				
	$W = 5.0 \text{ A} \times 230 \text{ V} \times 60 \text{ s} = 69000 \text{ J}$				
	Efficiency = 29 000 J / 69 000 J				
	= 0.42		t x		

Q5.

Question Number	Acceptable answers			Additional guidance	Mark
	•	Use of Efficiency = useful energy output/energy input	(1)	$\frac{\text{Example of calculation}}{\text{Efficiency}} = \frac{22 \text{ kWh}}{3.6 \text{ kW} \times 7 \text{h}}$	
	•	Uses Energy input is power (kW) × time (h)	(1)	Efficiency = 0.873	
	•	Efficiency = 0.87	(1)		3