Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:	_
----------------------	---

Max. Marks: 24 Marks

Time: 24 Minutes

Mark Schemes

Q1.

Question number	Acceptable answers	Additional guidance	Mark
	Recognises that weight acts at midpoint of diving board 1.8 (m) from X (1) Use of moment = perpendicular force x distance (1) Total clockwise moment = 3150 Nm (1)	Example of calculation: Total clockwise moment = $(680 \times 3.6)+(390 \times 1.8) = 3150 \text{ Nm}$ F = 3150/0.9 = 3500 N	
	 Recognises that clockwise moment = anticlockwise moment (1) F=3500 N (1) 		5

Q2.

Question Number	Acceptable Answer		Additional Guidance	Mark
(i)	 Use of F = \frac{GMm}{r^2} with F = \frac{mv^2}{r} Correct substitutions to calculate r h = 5.4×10⁵ m OR Use of g = \frac{GM}{r^2} to find value of g at orbit height Use of a = \frac{v^2}{r} with value of g at orbit height h = 5.4×10⁵ m 	(1) (1) (1) (1) (1)	Example of calculation: $\frac{GMm}{r^2} = \frac{mv^2}{r}$ $r = \frac{GM}{v^2}$ $r = \frac{6.67 \times 10^{-11} \text{N m}^2 \text{kg}^{-2} \times 5.97 \times 10^{24} \text{ kg}}{(7.59 \times 10^3 \text{ m s}^{-1})^2}$ $r = 6.91 \times 10^6 \text{m}$ $\therefore h = (6.91 \times 10^6 - 6.37 \times 10^6) \text{ m} = 5.42 \times 10^5 \text{m}$	3
(ii)	 Use of GPE = GMm/r GPE = 5.7 × 10¹⁰ J (ecf from (a)(i)) 	(1)	Example of calculation: $GPE = GMm \left(\frac{1}{r_1} - \frac{1}{r_2}\right)$ $\therefore GPE = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2} \times 5.97 \times 10^{24} \text{ kg}$ $\times 11600 \text{ kg} \left(\frac{1}{6.37 \times 10^6 \text{m}} - \frac{1}{6.91 \times 10^6 \text{m}}\right)$ $\therefore GPE = 5.67 \times 10^{10} \text{J}$	2

Question Number	Acceptable Answer	Ad	ditional Guidance	Mark
(iii)	This would bring the gravitational potential energy closer to zero	(1)		
	 This would mean that the satellite would orbit at a greater height as GPE ¹/_r 	(1)		
	 To remain in orbit the centripetal acceleration must equal the gravitational field strength at the orbit height Or Since 			
	gravitational force smaller, $\frac{mv^2}{r}$ would be reduced	(1)		
	• (Hence) r is greater so v must be smaller Or $v^2 = \frac{GM}{r}$ and satellite would orbit at lower speed	(1)		
	OR			
	 HST will have more kinetic energy at the original orbit height 	(1)		
	The centripetal force will be too small to keep it in this orbit	(1)		
	 The satellite would be travelling too fast, so it would move to a higher orbit 	(1)		4
	• (Hence) r is greater so v must be smaller Or $v^2 = \frac{GM}{r}$ and satellite would orbit at lower speed	(1)		

Question Number		Acceptable Answer		Additional guidance	Mark
(a)	•	attempts to find area under second peak <u>OR</u> use of a suitable equation of motion <u>OR</u> equate $E = \frac{1}{2}mv^2$ and $\Delta E = mg\Delta h$	(1)	Example of calculation: $h = \frac{1}{2} \times 4.2 \text{ m s}^{-1} \times (1.2-0.70) \text{ s} = 1.0 \text{ m}$	
	•	height = 0.9 - 1.0 m	(1)		(2)

Question Number		Acceptable Answer		Additional guidance	Mark
(b)		use of $\Delta E = mg\Delta h$ OR use of $E = \frac{1}{2}mv^2$ $\Delta E = 0.59 \text{ J}$	(1) (1)	Example of calculation: $E = 0.060 \text{ kg} \times 9.81 \text{m s}^{-2} \times (2.0 - 1.0) \text{m}$	
	S.	ΔE =0.39 J		E = 0.59 J	(2)

				-,
Question Number	Acceptable Answer		Additional guidance	Mark
(c)	 EITHER finds gradient of middle section use of F = ma 	(1) (1)	Example of calculation: $F = \frac{(6.3+4.2) \text{ m s}^{-1}}{(0.74-0.64) \text{ s}} \times 0.060 \text{ kg} = 64 \text{ N}$	
	• F = 64 N OR	(1)		
	 reads two corresponding pairs of v and t from middle section of graph 	(1)		
	• use of $F = \frac{m(v-u)}{\Delta t}$	(1)		
	• F = 64 N	(1)		(3)

Question Number	Acceptable Answer	Additional guidance	Mark
(d)	Initial free-fall gradient of both (1) graphs is the same	Accept the first line is the same	
	Bounce section	Accept time for the bounce is longer	
	the gradient of the (1) soft ball graph is less		
	Second free-fall gradient of the (1) soft ball graph is the same as the first graph OR the gradient is the same as in the		
	initial free-fall		(3)