Practice Question Set For A-Level

Subject : Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:	
Max. Marks : 26 Marks	Time : 26 Minutes
Q1.(a) Explain what is meant by the principle of conservation of momentum.	(0)
	(2)
(b) The picture shows a toy car initially at rest with a piece of modelling clay attached to	o it.
A student carries out an experiment to find the speed of a pellet fired from an air rifle. The horizontally into the modelling clay. The pellet remains in the modelling clay as the car motion of the car is filmed for analysis.	
The car travels a distance of 69 cm before coming to rest after a time of 1.3 s.	
(i) Show that the speed of the car immediately after being struck by the pellet was about	ut 1 m s ⁻¹ . (2)
(ii) State an assumption you made in order to apply the equation you used.	
(ii) State an accumption you made in order to apply the equation you dood.	(1)
(iii) Show that the speed of the pellet just before it collides with the car is about 120 m s	 S ⁻¹

mass of car and modelling clay = 97.31g	
mass of pellet = 0.84 g	(3)
c) The modelling clay is removed and is replaced by a metal plate of the same mass. The metal plate he back of the car. The experiment is repeated but this time the pellet bounces backwards.	e is fixed to
(i) Explain why the speed of the toy car will now be greater than in the original experiment.	
	(3)
ii) The film of this experiment shows that the pellet bounces back at an angle of 72° to the horizont	al.
Explain why the car would move even faster if the pellet bounced directly backwards at the same spe	eed.
	(1)
d) The student tests the result of the first experiment by firing a pellet into a pendulum with a bob modelling clay. She calculates the energy transferred.	nade of
1111(111	
string	
string	
modelling clay	

The student's data and calculations are shown:

	_			
- /	п	-	4.	_
		-		-

mass of pellet = 0.84 gmass of pendulum and pellet = 71.6 g change in vertical height of pendulum = 22.6 cm

Calculations

change in gravitational potential energy of pendulum and pellet = $71.6 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 0.226 \text{ m} = 0.16 \text{ J}$

therefore kinetic energy of pendulum and pellet immediately after collision = 0.16 J therefore kinetic energy of pellet immediately before collision = 0.16 J therefore speed of pellet before collision = 19.5 m s⁻¹

There are no mathematical errors but her answer for the speed is too small.

State and explain which of the statements in the calculations are correct and which are not.	
	(4)

(Total for Question = 16 marks)

Q2.

The diagram shows a battery-powered clock on a wall. It has a minute hand and an hour hand.

(a) Calculate the average angular velocity of the minute hand.	
	(2)

		Angular v	elocity =	
(b) The diagra	am shows the position of the minute	hand when the	e time is 1 : 44 and when the	e time is 1 : 46.
			The diagram is not to scale.	
mJ. mass of mi	the work done against the force of gr inute hand = 14 g ninute hand = 8.0 cm	ravity to move t	he minute hand from 1 : 44	to 1 : 46 is about 1
iongai oi m				(5)
After a time	uses a 1.5 V cell and draws a maxire, the maximum power of the cell ha		·	the clock run
	he time taken for the minute hand to			position. (3
			taken =	

(Total for question = 10 marks)