Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:

Max. Marks: 26 Marks

Time: 26 Minutes

Mark Schemes

Q1.

Question Number	Answer		Mark
(a)	Sum of momenta before (collision) = sum of momenta after (collision) Or the total momentum before (a collision) = the total momentum after (a collision) Or total momentum remains constant	85400	
	Or the momentum of a system remains constant Providing no external/unbalanced/resultant force acts Or in a closed system	(1)	2
(b)(i)	Use of equation(s) of motion sufficient to get answer Initial speed = 1.1 (m s ⁻¹)	(1) (1)	2
	Example of calculation s = (u + v)t/2 $0.69 \text{ m} = (u + 0) \times 1.3 \text{ s}/2$ $u = 1.06 \text{ m s}^{-1}$		
(b)(ii)	Constant acceleration/deceleration (accept constant force)	(1)	1
(b)(iii)	Use of momentum = mv ecf v from (b)(i) Calculates momentum after collision using correct mass Speed of pellet = 117 or 124 or 129 (m s ⁻¹) Example of calculation		3
	Momentum after = $(97.31 + 0.84)$ g × 1.06 m s ⁻¹ = 104 g m s ⁻¹ Momentum before = momentum after Speed of pellet = 104 g m s ⁻¹ / 0.84 g = 124 m s ⁻¹		

	Total for question		16
	E _k (of pellet before collision) is greater than 0.16J	(1)	4
	Some energy becomes heat	7.500E.	
	collision (do not credit just 'KE is lost')	(1)	
	Ek in collision not conserved Or not an elastic collision Or inelastic	(1)	
	correct	(-)	
	$E_k \rightarrow E_{grav}$ of pendulum correct Or KE after collision is	(1)	
	due to air resistance or sound]		
	the GPE is correct. MP1 is for the assumption that the KE after firing is the same as the max GPE. Do not credit energy loss		
(0)	is about the assumptions made. Do not credit a statement that		
(d)	[The question says that the calculations are correct, the question	į.	
(c)(ii)	reference to greater horizontal momentum/force	(1)	1
	Pellet undergoes a bigger momentum/velocity change Or mass of car is less	(1)	3
	Pollot and demand a biocommunity of a location shows		
	Or momentum after = momentum of car - momentum of pellet	(1)	
	Pellet (bounces back so) has negative momentum /velocity	5332	
	Mention of momentum	(1)	
5,5,55	using technical wording where appropriate)		
*(c)(i)	(QWC - Work must be clear and organised in a logical manner		

Question Number	Acceptable Answer		Additional guidance	Mark
(a)	• use of $T = \frac{2\pi}{w}$ • 1.7x10 ⁻³ rad s ⁻¹ or $\frac{\pi}{1800}$ rad s ⁻¹	(1) (1)	Example of calculation: $w = \frac{2\pi}{(60 \times 60) \text{ s}}$	(2)

Question Number	Acceptable Answe	г	Additional guidance	Mark
(b)	 recognises weight acts halfway along hand 	(1)	Example of calculation: $W = 0.014 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times (2 \times 0.04 \sin 6^{\circ} \text{ m})$	
	uses correct angle between the two positions	(1)	$W = 1.1 \times 10^{-3} \text{ J}$	
	determines change in vertical height (= 0.008 m)	(1)		
	• use of $\Delta E = mg\Delta h$	(1)		
a.	• work done = 1.1 (mJ)	(1)		(5)

Question Number	Acceptable Answer		Additional guidance	Mark
(c)	• use of $P = VI$	(1)	Example of calculation:	
	• use of $P = \frac{W}{t}$ AND 65%	(1)	$P = 1.5 \text{ V} \times 8.0 \times 10^{-6} \text{ A} = 1.2 \times 10^{-5} \text{ W}$ $t = \frac{1.1 \times 10^{-3} \text{ J}}{0.65 \times 1.2 \times 10^{-5} \text{ W}} = 141 \text{ s}$	
	• t = 141 s	(1)		
				(3)