Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:	

Max. Marks : 22 Marks Time : 22 Minutes

Mark Schemes

Q1.

Question Number			Mark
(a)	Use of suitable equation(s) of motion to find distance	(1)	
	Height = 7.4 (m)	(1)	2
	(accept $9.8(1)/6$ or 1.635 for acceleration but do not accept $g/6$ as a substitution if final answer is wrong and looking to award MP1 only) (a reverse argument leading to $t = 2.9$ s can score both marks)		
	Example of calculation $s = \frac{1}{2} at^{2}$ $s = \frac{1}{2} \times (9.81 \text{ m s}^{-2} / 6) \times (3 \text{ s})^{2}$		
	s = 7.4 m		
(b)(i)	Use of trig function appropriate to calculate vertical component of velocity Or 10.1 (m s ⁻¹) seen	(1)	
	Use of suitable equation(s) of motion to find time	(1)	
	t = 12.4 (s)	(1)	3
	(if v and u not consistent with sign of g max 2 marks. Calculation can be done for total time of 12.3 s with either total displacement =0 or u =- v)		
	Example of calculation $u = 18 \text{ m s}^{-1} \text{ x sin } 34^{\circ} = 10.1 \text{ m s}^{-1}$ v = u + at		
	$0 = 10.1 \text{ m s}^{-1} - (9.81 \text{ m s}^{-2} / 6) \text{ x } t$ t = 6.2 s to max height time of flight = 12.4 s		

	Total for question		11
	lack of atmosphere: no work done against friction Or no slowing/deceleration due to friction (accept air resistance or drag for friction)	(1)	3
*(c)	lower gravitational field strength: lower acceleration the idea of an increased time of flight (do not accept slower in place of lower)	(1) (1)	
	Example of calculation $v = 18 \text{ m s}^{-1} \times \cos 34^{\circ} = 14.9 \text{ m s}^{-1}$ $s = vt = 14.9 \text{ m s}^{-1} \times 12.4 \text{ s}$ s = 185.0 m		
	Distance = 185 (m) (ecf time value from part (i))	(1)	3
(b)(ii)	Use of trig function appropriate to calculate horizontal component of velocity Or 14.9 (m s ⁻¹) seen Or Use of Pythagoras Use of suitable equation(s) of motion to find distance	(1) (1)	

Q2.

Question Number			Mark
(a) (i)	Use of equation of motion suitable for a, e.g. $v = u + at$	(1)	
	$a = 16.3 \text{ m s}^{-2}$ (2.1 × 10 ⁵ km h ⁻² or 58.7 km h ⁻¹ s ⁻¹)	(1)	2
	Example of calculation		
	37.5 m s ⁻¹ - 0		
	a = 2.3 s		
	$a = 16.3 \text{ m s}^{-2}$	(1)	
(a) (ii)	Use of $E_k = \frac{1}{2} mv^2$	(1)	
	Use of $P = E/t$ Power = 3.1×10^6 W	(1)	
	$Power = 3.1 \times 10^{\circ} \text{ W}$	(1)	
	Or		
	Use of $F = ma$ (must be a from (i)) and Use of equation to find		
	distance and use of work done = Fd	(1)	
	Use of $P = E/t$	(1)	
	Power = $3.1 \times 10^6 \text{ W}$	(1)	3
	(distance = 43 m)		
	Examples of calculations		
	$E_k = \frac{1}{2} \times 10\ 000\ \text{kg} \times (37.5\ \text{m s}^{-1})^2 = 7.03 \times 10^6\ \text{J}$ Power = $7.03 \times 10^6\ \text{J} / 2.3\ \text{s} = 3.1 \times 10^6\ \text{W}$		
	Power = $7.03 \times 10^{\circ} \text{ J} / 2.3 \text{ s} = 3.1 \times 10^{\circ} \text{ W}$		

	Total for question		11
	Lower frictional/resistive force Or less viscous drag	(1)	2
	(accept a reverse argument e.g. when cold oil is more viscous)		
(c)	Viscosity of oil decreases (with increasing temperature) Or the (warm) oil is less viscous	(1)	
	more energy needed (to reach top) Or insufficient energy (to reach top)	(1)	3
	need same acceleration/ (max) velocity OR acceleration/(max) velocity is too small	(1)	
	larger force is needed Or the (same) force is insufficient	(1)	
	technical wording where appropriate)		
*(b)	(QWC - Work must be clear and organised in a logical manner using		
	(do not accept 'lost' but accept air resistance as an alternative to friction)		
	Or idea that more energy required (due to energy transfer) due to friction.	(1)	1
	Or work done against friction		
	Or energy transferred due to friction		
(a) (iii)	Energy transferred by heating		