Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 2 (Mechanics)

Name of the Student:

Max. Marks: 23 Marks

Time: 23 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
(a)	 use of v² = u² + 2as (1) OR use of ½ mv² =mgh (1) initial speed = 7.0 m s⁻¹ (1) 	Example of calculation: v = 0 $a = -9.81$ m s ⁻¹ $s = 2.5$ m $u^2 = -2as$ $u^2 = -(2 \times -9.81$ m s ⁻¹ $\times 2.5$ m) = 49 m ² s ⁻² u = 7.0 m s ⁻¹	
		Alternative calculation: $\frac{1}{2}v^2 = gh$ $v = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 2.5} = 7.0 \text{ m s}^{-1}$	2
(b)	 use of trig function to find v vertical (1) use of trig function to find v horizontal (1) use of equation of motion to find time of flight (1) use of equation of motion to find distance (1) horizontal distance = 2.7 m (1) 	Example of calculation vertical velocity = 6.5 m s ⁻¹ sin 20 = 2.22 m s ⁻¹ time of flight using $v = u + at$ -2.22 m s ⁻¹ = 2.22 m s ⁻¹ + (-9.81 m s ⁻¹ × t) t = 0.45 s horizontal velocity = 6.5 m s ⁻¹ cos 20 = 6.11 m s ⁻¹ horizontal distance using $s = ut$ s = 6.11 m s ⁻¹ × 0.45 s s = 2.7 m	5
(c)(i)	 use of p=mv (1) correctly applies conservation of momentum (1) v = 14.8 m s⁻¹ (1) 	Example of calculation: momentum of lid = - momentum of canister $1.6 \text{ g} \times v = 4.3 \text{ g} \times 5.5 \text{ m s}^{-1}$ $v = 14.8 \text{ m s}^{-1}$	3
(c)(ii)	An explanation that makes reference to: • no unbalanced force on dry ice (1) • so no acceleration according to Newton's First Law (1)	MP2 is dependent on MP1 Allow suitable reference to Newton's Second Law for MP2	2

Question Number	Acceptable Answers		Additional Guidance	Mark
(a)(i)	measurements from page, 7 mm, 6.3 cm	(1)		
	calculates area using 3 × 0.007 m × 0.063 m	(1)		
	uses ± 1mm to calculate percentage uncertainties	(1)		
	adds percentage uncertainties to calculate final uncertainty, 1.3 × 10 ⁻³ m ² ± 0.2 × 10 ⁻³ m ²	(1)		(4)

Question Number	Acceptable Answers		Additional Guidance	Mark
(a)(ii)	 use of I = P/A 	(1)		
	• P= 1.61 W	(1)		
	• use of $P = IV$	(1)		
	 use of efficiency power output power input 	(1)		
	• efficiency = 0.096 or 9.6%	(1)		
3	comparison – this is about 10%, so correct	(1)		(5)

Question Number	Acceptable Ans	swers	Additional Guidance	Mark
(b)	very small amount of energy OR the hat is something we don't really need	(1)		(2)
	 so it isn't significant compared to the energy required to make it 	(1)		