Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 3_ElectricCircuits

Name of the Student:_____

Max. Marks: 19 Marks

Time: 19 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	
	 270K corresponds to a resistivity of 2 × 10⁻⁸ (Ω m) Use of P=VI Use of R=ρl/A Use of P=I²R Power losses from copper cables 19 kW so more than 7 kW and that the superconductor would save 	(1) (1) (1) (1)	range allow $2 \times 10^{-8} \Omega$ m to $2.1 \times 10^{-8} \Omega$ m Example of calculation: $40 \times 10^6 \text{ W} = 110 \times 10^3 \text{ V} \times I$ $I = 364 \text{ A}$ $R = \frac{2 \times 10^{-8} \Omega \text{m} \times 1.050 \times 10^3 \text{ m}}{145 \times 10^{-6} \text{ m}^2} = 0.145 \Omega$ $P = 364^2 \text{ A}^2 \times 0.145 \Omega = 19.2 \text{ kW}$	5
	energy. MP5 dependant on MP2,3,4 (Acceptable range for Power losses: 9.6 kW to 34 kW)	(1)		

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of P = IV Use of V = ε - Ir Or V = 180 - 0.036I Converts kW to W and rearranges equation to that shown 	(1) (1) (1)	Example of derivation: $88 \text{ kW} = I \times V$ $88 \text{ kW} = I \times (180 - 0.036I)$ $88000 = 180I - 0.036I^2$ $0.036I^2 - 180I + 88000 = 0$	3
(ii)	 Use of Q = It Time that batteries can deliver this power = 40 s so more than 7 s 	(1)	Example of calculation: $6.1 \text{ A h} = 550 \text{ A} \times \text{t}$ t = 0.011 h = 40 s	2

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of I = P/A P = 0.014 W 	(1) (1)	Example of calculation $P = 7.8 \text{ W m}^{-2} \times 1.8 \times 10^{-3} \text{ m}^2$ P = 0.014 W	2
(ii)	 Use of P = VI Use of efficiency = useful power output total power input Efficiency = 0.19 or 0.20 or 19 % or 20 % 	(1) (1) (1)	Example of calculation Power input into LED = 3.6 V × 20 × 10^{-3} A = 0.072 W Efficiency = $\frac{0.014 \text{ W}}{0.072 \text{ W}}$ = 0.194 ecf from (i) for the power output of LED	3

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
	p.d. across capacitor increases Or p.d. across resistor decreases p.d. across capacitor increases to 5V p.d. across resistor starts at 5V and reduces to 0V Exponentially	(1) (1) (1) (1)		4