Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic : 6_ Further Mechanics

Name of the Student:	

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance	Mark
	 A (resultant) force F is required to maintain circular motion This force is friction (between car/slider and track) 	alt: A (resultant) force acts to the centre of the circle. (1)	
	 As v increased F required increased until it exceeds friction and car slides off track 	(1)	3

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
i	 Use of ω = 2π/T For at least 2 full cycles ω = 6.5 × 10⁻⁶ (radian s⁻¹) 	(1) (1) (1)	For MP3, accept correctly rounded answers in range 6.5×10^{-6} radian s ⁻¹ to 6.6×10^{-6} radian s ⁻¹ Example of calculation $\omega = 5 \times 2\pi / (56 \times 24 \times 60 \times 60)$ s $= 6.49 \times 10^{-6}$ radian s ⁻¹	3
ii	 Equates F = Gm₁m₂/r² and F = mω²r Or F = Gm₁m₂/r² and F = mv²/r with v = 2πr/T Correct rearrangement and substitution (e.g. in r³ = Gm₁/ω²) r = 7.2 × 10⁹ m (ecf from (b)(i)) 	(1) (1) (1)	Example of calculation $r^3 = 6.67 \times 10^{-11} \text{ N m}^2 \text{ kg}^{-2} \times 0.12 \times 1.99$ $\times 10^{30} \text{ kg} / (6.5 \times 10^{-6} \text{ radian s}^{-1})^2$ $r = 7.2 \times 10^9 \text{ m}$ ($r = 7.6 \times 10^9 \text{ m}$ for 'show that' value)	3

Question Number	Answer		Mark
(a)(i)	R= 9.32 kN	(1)	1
	Example of answer		
	$R = 950 \text{ kg} \times 9.81 \text{ m s}^{-2}$		
	$R = 9320 \mathrm{N}$		
(a)(ii)	Use of $F = mv^2/r$	(1)	W
2002 5	$R = mg - mv^2/r$	(1)	
	R = 2480 N ecf their value of R	(1)	3
	Example of calculation		
	$R = 9320 \text{ N} - (950 \text{ kg} \times 12.0^2 \text{ m}^2 \text{ s}^{-2} / 20.0 \text{ m})$		
	R = 2480 N		
(b)	An answer that either states implicitly or implies that	111	
	'The required centripetal force > mg and so cannot be provided'.	(1)	1
	Total for question		5

Q4.

	Acceptable answers		Additional guidance	Mark
•	inner lane covers a smaller distance	(1)		
•	inner lane has a smaller radius of curvature	(1)		
•	(maximum horizontal force is the same for both cars) therefore maximum speed is greater for the car on the outside lane (so outcome unclear)	(1)		
	•	inner lane covers a smaller distance inner lane has a smaller radius of curvature (maximum horizontal force is the same for both cars) therefore maximum speed is greater for the car on the outside lane	inner lane covers a smaller distance (1) inner lane has a smaller radius of curvature (1) (maximum horizontal force is the same for both cars) therefore maximum speed is greater for the car on the outside lane (1)	inner lane covers a smaller distance (1) inner lane has a smaller radius of curvature (1) (maximum horizontal force is the same for both cars) therefore maximum speed is greater for the car on the outside lane (1)