Practice Question Set For A-Level

**Subject: Physics** 

Paper-1 Topic : 6\_ Further Mechanics



Name of the Student:

Max. Marks: 16 Marks

Time: 16 Minutes

Mark Schemes

Q1.

| Question<br>Number | Answer                                                                                                                                                     |      | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| (i)                | Outward spiral from centre in either direction, minimum of two complete loops                                                                              | (1)  | 1    |
| (ii)               | Direction consistent with diagram:<br>Clockwise path, field out of page                                                                                    | 0.00 |      |
|                    | Anticlockwise path, field into page                                                                                                                        | (1)  | 1    |
| (iii)              | Electric field/p.d. between dees causes (resultant) force/acceleration                                                                                     | (1)  |      |
|                    | Proton makes half a revolution in half a cycle of the a.c.                                                                                                 |      |      |
|                    | Or facing dee (always) negative when proton reaches gap.                                                                                                   |      |      |
|                    | Or whenever the proton gets to a gap, the p.d. has reversed                                                                                                | (1)  |      |
|                    | k.e./speed (only)increases each time the proton crosses the gap                                                                                            | 211  |      |
|                    | Or work done by the field in the gap increases the k.e.                                                                                                    | (1)  | 3    |
| (iv)               | $Bev=mv^2/r$ Or $r=p/Be$                                                                                                                                   | (1)  | 8    |
|                    | $v = 2\pi r/T$                                                                                                                                             | (1)  |      |
|                    | $T=1/f$ (seeing $f=v/(2\pi r)$ scores MP2 & 3)                                                                                                             | (1)  |      |
|                    | Or                                                                                                                                                         | 02/2 |      |
|                    | $Bev = mr\omega^2$                                                                                                                                         | (1)  |      |
|                    | $v = r\omega$                                                                                                                                              | (1)  |      |
|                    | $\omega = 2\pi f \text{ (seeing } v/r = 2\pi f \text{ scores MP2 & 3)}$                                                                                    | (1)  | 3    |
| (v)                | Use of $B = 2\pi f m/e$ with mass of proton                                                                                                                | (1)  |      |
|                    | $f = 1.8 \times 10^4 \mathrm{Hz}$                                                                                                                          | (1)  | 2    |
|                    | Example of calculation                                                                                                                                     |      |      |
|                    | $f = eB/2\pi m$                                                                                                                                            |      |      |
|                    | $f = (1.6 \times 10^{-19} \text{ C} \times 1.2 \times 10^{-3} \text{ T})/(2\pi \times 1.67 \times 10^{-27} \text{kg})$<br>$f = 1.8 \times 10^4 \text{ Hz}$ |      |      |

| Question<br>Number | Acceptable Answer                                                                                                                                                                                                                                                                      |                                               | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | Satellite would always be above the same point on the Earth's surface     So that contact/communication with the space station would be maintained at all times                                                                                                                        | (1)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2    |
| (ii)               | Use of $F = \frac{GMm}{r^2}$ with $F = m\omega^2 r$<br>Use of $\omega = 2\pi/T$<br>$r = 4.23 \times 10^7$ m<br>$h = 3.6 \times 10^7$ m<br>OR<br>Use of $F = \frac{GMm}{r^2}$ with $F = \frac{mv^2}{r}$<br>Use of $v = 2\pi r/T$<br>$r = 4.23 \times 10^7$ m<br>$h = 3.6 \times 10^7$ m | (1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1)<br>(1) | Example of calculation:<br>$m\omega^{2}r = \frac{GMm}{r^{2}}$ $\therefore \left(\frac{2\pi}{T}\right)^{2} = \frac{GM}{r^{3}}$ $\therefore r = \sqrt[3]{\frac{GMT^{2}}{4\pi^{2}}}$ $r = \sqrt[3]{\frac{6.67 \times 10^{11} \text{N m}^{2} \text{ kg}^{2} \times 6.00 \times 10^{24} \text{kg} \times (8.64 \times 10^{4} \text{s})^{2}}{4\pi^{2}}}$ $r = 4.23 \times 10^{7} \text{m}$ $h = r - R_{E} = 4.23 \times 10^{7} - 6.4 \times 10^{6} \text{m}$ $= 3.59 \times 10^{7} \text{m}$ | 4    |