Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Electric Field

Name of the Student:							
----------------------	--	--	--	--	--	--	--

Max. Marks: 18 Marks

Time: 18 Minutes

Mark Schemes

Q1.

Question Number	Answer	Mark
	C	1

Q2.

Question Number	Acceptable answers			Additional guidance	Mark
50 SF	•	Equipotential lines would be further apart	(1)		(1)

Q3.

Question Number	Acceptable answers	Additional guidance	Mark
(i)	• States a value of ΔV • Uses $\Delta V/\Delta d$ with a difference in distance (1) • $E = 560 \text{ V m}^{-1}$ allow range $500\text{-}560 \text{ V m}^{-1}$	Example of calculation: $E = \frac{(80-75)V}{0.009m} = 556 \text{ V m}^{-1}$ (Alt: 5.6 V cm ⁻¹)	(3)
(ii)	Line perpendicular to a least 2 equipotential lines (1 Arrow pointing towards flower		(2)

(iii)		States $V \times r = \text{constant}$	(1)		
		States VA7 - Constant	(1)		
		One corresponding pair of		Example of calculation:	
		values of V and r	(1)	Using $V = 95$ and $r = 2.0 -$	
		values of V and V	200	2.2: Vr=190 - 209	
		At least two pairs of values used	(1)	V = 90 and $r = 2.1 - 2.5$: $Vr = 189 - 225$	(3
	39	to show that the product	(-/	V = 85 and $r = 2.5 - 2.8$: $Vr = 212 - 238$	1-
		이 가게 하는 것이 하면 하는 것이 되었습니다. 그런 사람들은 그 그리고 하는 것이다.		V = 80 and $r = 3.5 - 3.8$: $Vr = 280 - 304$	
		is not constant therefore			
		not radial		V = 75 and $r = 4.3 - 4.7$: $Vr = 323 - 353$	
				V = 70 and $r = 5.8 - 6.2$: $Vr = 406 - 434$	
		(MP3 dependent on MP2)		Using $r = 3$ and $V = 82 - 83$: $Vr = 246 - 249$	
				r = 4 and $V = 77 - 78$: $Vr = 308 - 312$	
	1			r = 5 and $V = 72 - 73$: $Vr = 360 - 365$	

Q4.

Question Number	Answer	*** **********************************	Mark
(a)	(Electric field strength (at a point in a field) is) the force per unit charge (accept force per coulomb of charge)	(1)	
	Acting on a (small) positive charge.	(1)	2
(b)(i)	Use of $E = kQ/r^2$	(1)	
	Electric field due to $Q_1 = 4.1(1) \times 10^6$ (N C ⁻¹) Use of 11.9 cm to find field due to Q_2	(1) (1)	
	Or Use of $E = kQ/r^2$	(1) (1)	
	Use of E1 /E2 = Q1 r22/ Q2 r12 $E_1/E_2 = 1$	(1)	3
	Example of calculation Electric field due to Q_1 = $(8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}) \times (3 \times 10^{-6} \text{ C}) / (8.1 \times 10^{-2})^2$ = $4.11 \times 10^6 \text{ N C}^{-1}$		
	Electric field due to Q_2 = $(8.99 \times 10^9 \text{ N m}^2 \text{ C}^{-2}) \times (6.5 \times 10^{-6} \text{ C}) / (11.9 \times 10^{-2})^2 = 4.13 \times 10^6 \text{ N C}^{-1}$		
(b)(ii)	(Force on charge is) zero/negligible/approx zero (Allow values less than 0.1 N)	(1)	1
(b)(iii)	At midpoint repulsive force due to Q_2 > repulsive force due to Q_1 Or the <u>resultant</u> field/force is repulsive	(1)	
	Work must be done against the repulsive force/field to move the charge to this position.	(1)	2
	Total for question		8