Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic :7_ Electric Field

Student:_____

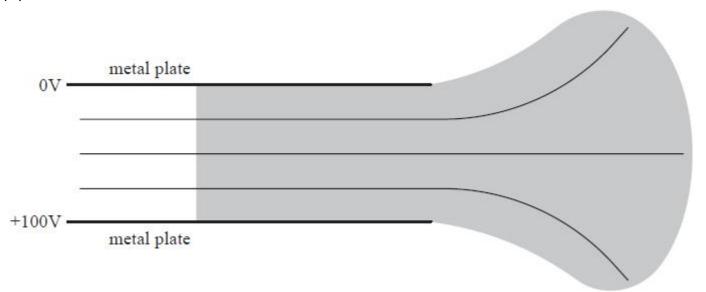
Max. Marks :18 Marks	Time : 18 Minutes
Q1.	
Answer the question with a cross in the box you think is correct . If you chanswer, put a line through the box and then mark your new answer with a	
A potential difference is applied across two parallel plates. A particle carrying a characteristic between the plates and experiences a force F .	rge of +0.1 C is placed

The distance between the plates is halved. The potential difference remains constant. Which of the following is now equal to the electric field strength between the plates?

. __

 \square A 5F

 \square A $\supset F$

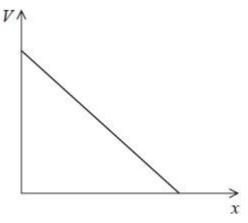

■ B 10F■ C 20F

■ D 40F

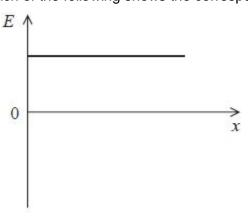
(Total for question = 1 mark)

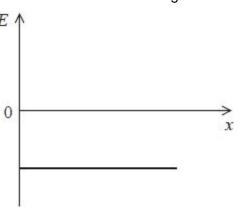
Q2.

13 The diagram shows two parallel metal plates with a potential difference (p.d.) of 100 V across them. Three equipotential lines are shown.

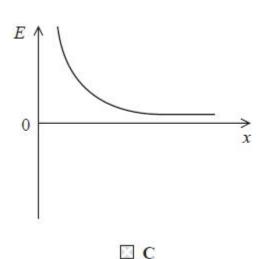

Draw lines to represent the electric field in the shaded area.

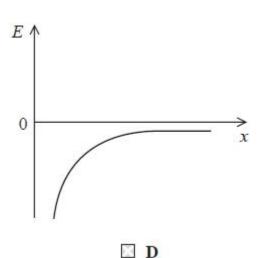
(Total for question = 4 marks)

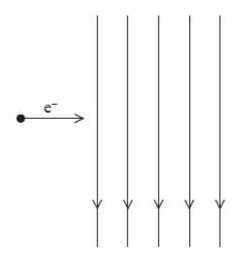

Q3.


Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

The graph shows how an electric potential V varies with distance x.


Which of the following shows the corresponding variation of electric field strength *E* with *x*?

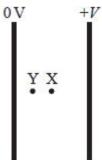




Q4.

An electron travelling horizontally enters a uniform electric field which acts vertically downwards as shown in the diagram.

Which of the following statements is incorrect?


- A The electron follows a parabolic path.
 - B The electron accelerates while in the field.
- C The electric force on the electron acts downwards.
- D The speed of the electron increases.

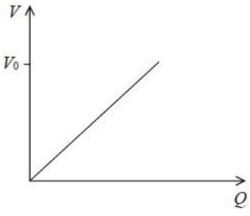
(Total for question = 1 mark)

Q5.

Answer the question with a cross in the box you think is correct (\boxtimes). If you change your mind about an answer, put a line through the box (\boxtimes) and then mark your new answer with a cross (\boxtimes).

A potential difference V is applied across two parallel plates. An electron midway between the two plates at point X experiences an electric force F.

The electron moves to point Y which is halfway between point X and the left-hand plate.


Wh	ich c	of the following is the electric force experienced by the electron at Y?
	Α	2 <i>F</i>
	В	F
		\underline{F}
	С	$\frac{F}{2}$ $\frac{F}{4}$
_		\underline{F}
	D	4
		(Total for question = 1 mark
		(Team ier queenen = Timuri
00		
Q6.		
		the question with a cross in the box you think is correct $oxtimes$. If you change your mind about an , put a line through the box $oxtimes$ and then mark your new answer with a cross $oxtimes$.
The	dist	cance between a proton and an electron is r . The electrostatic force is F .
The	dist	ance between the proton and electron is doubled.
Wh	ich c	of the following is equal to the electrostatic force at this separation?
	~	\mathbf{A} 2 F
		$ \begin{array}{ccc} \mathbf{B} & \frac{F}{2} \\ \mathbf{C} & \frac{F}{2} \end{array} $
		2
	Š	$C = \frac{F}{}$
		3
		$\mathbf{p} \cdot \frac{F}{f}$
		4
		(Total for question = 1 mark
Q7.		
	-	sitor of 50 µF is charged to a potential difference of 12 V.
_		ergy stored on the charged capacitor in joules is given by
	Α	$0.5 \times 50 \times 10^{-6} \times 12^{2}$
		$0.5 \times 50 \times 10^{-6}$
	В	12^2
		0.5×12^2
	С	50×10^{-6}

Q8.

Answer the question with a cross in the box you think is correct \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

A capacitor is connected to a power supply and charged to a potential difference V_0 .

The graph shows how the potential difference *V* across the capacitor varies with the charge *Q* on the capacitor.

At a potential difference V_0 a small charge ΔQ is added to the capacitor. This results in a small increase in potential difference ΔV across the capacitor.

Which of the following gives the approximate increase in energy stored on the capacitor due to this extra charge?

- \square A $\triangle V \times \triangle Q$
- \square B $\frac{\Delta V \times \Delta Q}{2}$
- \square C $V_0 \times \Delta Q$
- \square D $\frac{V_0 \times \Delta Q}{2}$

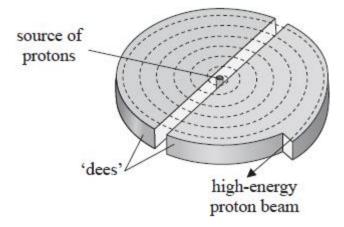
(Total for question = 1 mark)

Q9.

A capacitor of capacitance *C* has a potential difference *V* across it. The energy stored on the capacitor is *Z* joules. A second capacitor of capacitance *C*/2 has a potential difference 2*V* across it. The energy stored on the second capacitor is

- \square A Z
- B 2Z

Х	С	4Z
	C	


D

(Total for question = 1 mark)

Q10.

Proton beam therapy is being introduced in the UK as a new cancer treatment.

A beam of protons is accelerated by a cyclotron to an energy of 23 MeV and is then focused onto a tumour.

* Explain how the cyclotron produces the high-energy proton beam.	
	(6)

(Total for question = 6 marks)