Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Electric Field

Name of the Student:

Max. Marks: 24 Marks

Time: 24 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Use of $V = \frac{Q}{4\pi\varepsilon_0 r}$	(1)	Example of calculation $7.30 \times 10^{-13} \text{ J} =$	4
	Identifies number of (positive) charges for alpha or gold nucleus	(1)	$\left(\frac{8.99\times10^{9}\text{Nm}^{2}\text{C}^{-2}\times79\times1.6\times10^{-19}\text{C}}{r}\right)\times2\times1.6\times10^{-19}\text{C}$) ⁻¹⁹ C
	• Use of $W = VQ$	(1)	$r = 4.98 \times 10^{-14} \mathrm{m}$	
	r = 5 × 10 ⁻¹⁴ m so textbook statement correct Or V = 7.27 × 10 ⁻¹³ J so textbook	nt is (1)		
	statement is correct (MP4 dependent on MP1)			
(ii)	• Use of $E_k = \frac{p^2}{2m}$	(1)	Accept Use of $Ek = \frac{1}{2}mv^2$ and $p = mv$	3
	Converts atomic mass to kg	(1)	Example of calculation	271
	• $p = 9.9 \times 10^{-20} \text{ kg m s}^{-1}$	(1)	$7.30 \times 10^{-13} \text{ J} = p^2/2 \times 4 \times 1.66 \times 10^{-10}$ $p = 9.9 \times 10^{-20} \text{ kg m s}^{-1}$	r kg

Q2.

Question Number	Acceptable answers	Additional guidance	Mark
	The only correct answer is B		1
	A is not the correct answer, as this is a correct equation of motion in the vertical plane. C is not the correct answer, as this is a correct equation of motion in the vertical plane. D is not the correct answer, as this is a correct equation		
	of motion in the vertical plane.		

Question Number	Acceptable a	inswers	Additional guidance		
(i)	• Use of $E = V/d$	(1)	Example of calculation 3 × 10 ⁶ V m ⁻¹ = V / 0.002 m	2	
	• V = 6000 V	(1)	V = 6000 V		
(ii)	(A spark is) a current (drafter from the supply)	awn (1)		3	
	A potential difference is:		Accept "lost volts" are present/increases		
	across the internal resista of the supply	nce (1)	Accept reduces the terminal potential		
	 According to V = E-Ir V decreases Or (the decrease in V) is large because the internal 	I.	difference which is shown on the voltmeter		
	resistance is large	(1)			

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
	 Either j has units A m⁻² E has units V m⁻¹ or N C⁻¹ ρ has units of Ω m Algebra to show units the same on both sides Or If formulas have been used: Substitution using ρ = RA/l Substitution using E = V/d Substitution using R = V/I The equations above and j = I/A need to be rearranged and simplified with Ω (or R) appearing on either side 	(1) (1) (1) (1) (1) (1) (1)	Example: Units of $\frac{E}{j} = \frac{V \text{m}^{-1}}{A \text{m}^{-2}} = \Omega \text{m}$ and these are the units of ρ Or find agreements for both sides using options shown below: Units of $\frac{E}{j}$ are $\frac{\text{N C}^{-1}}{A \text{m}^{-2}} = \frac{\text{Nm}^2}{A \text{C}} = \frac{\text{Jm}}{A \text{C}} = \frac{\text{kgms}^{-2} \text{m}^2}{A^2 \text{s}} = \frac{\text{kgm}^3 \text{s}^{-3}}{A^2}$ Units of $\rho = \Omega \text{m} = \frac{\text{V}}{A} \text{m} = \frac{\text{Nm}^2}{\text{CA}} = \frac{\text{Jm}}{\text{CA}} = \frac{\text{Jm}}{\text{CA}} = \frac{\text{kgm}^3 \text{s}^{-3}}{A^2 \text{s}} = \frac{\text{kgm}^3 \text{s}^{-3}}{A^2 \text{s}}$	4

Question Number	Answer	Mark
	D	1

Q6.

Question Number	Acceptable Answer		Additional Guidance	Mark
	An explanation that makes reference to the following points: • The potential difference creates an electric field • An (electric) field/force does work on the electrons (increasing their kinetic energy) Or an (electric) field/force accelerates the electrons (increasing their velocity)	(1)		2

Question Number	Answer		Mark
Number	Use of $F_E = kQ_1Q_2/r^2$	(1)	e .
	Use of $W = mg$	(1)	
	Resolve vertically $T\cos\theta = mg$ and Resolve horizontally $T\sin\theta = F_E$	(1)	
	Attempt to combine components to give $\tan \theta$ ($\tan \theta = F_E/mg$)	(1)	
	$\theta = 41^{\circ}$ to 42°	(1)	
	$T = 0.035 \mathrm{N}$	(1)	
	Or		
	Use of $F_E = kQ_1Q_2/r^2$	(1)	
	Use of $W = mg$	(1)	
	Use of Pythagoras to find tension force	(1)	
	Tan $\theta = F_E/mg$ Or $\cos \theta = mg/T$ Or $\sin \theta = F_E/T$	(1)	
	$\theta = 41^{\circ} \text{ to } 42^{\circ}$	(1)	
	$T = 0.035 \mathrm{N}$	(1)	
	(if they halve the separation or halve the electric force they can still get MP1 and so could score MP1,2, 3 & 4)		
	Example of calculation		
	Weight of sphere = $0.0027 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.026 \text{ N}$		
	Electric force $F_E = kQ_1Q_2/r^2$		
	= 8.99×10^{9} N m ² C ⁻² × $(4.0 \times 10^{-7} \text{ C})^{2} / 0.25^{2}$ m ² = 0.023 N		
	Vertically $T \cos \theta = mg$		
	Horizontally $T \sin \theta = F_{\rm E}$		
	$Tan \theta = F_E/mg = 0.023 \text{ N}/ 0.026 \text{ N}$		
	$\theta = 41^{\circ}$		
	sub into vertical equation		
	$T = mg/\cos\theta = 0.026 \text{ N}/\cos 41$		
	$T = 0.034 \mathrm{N}$		

Q8.

Question Number	Answer	Mark
2	С	1