Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Electric Field 2

Name of the Student:

Max. Marks: 26 Marks

Time: 26 Minutes

Mark Schemes

Q1.

Question number	Acceptable answers	Additional guidance	Mark
	Either • Use Q = 2.6 to read time constant from graph (1)	Example of calculation:	
	OR draw tangent to curve at $t = 0$ and obtain time	Active entrangement to the terrories	
	constant from intercept on x axis (1)	T = 19 (ms)	
	• $t = 17 - 18 \text{ (ms) (1)}$	$C = 19 \times 10^{-3}/900 =$	
	• Use of $T = RC$ with their $T(1)$	0.021 mF	
	• $C = 0.019 - 0.021 \text{ mF (1)}$		
	OR		
	• Q0 = 7 (mC) read from graph (1)		
	 Any corresponding values of Q and t read from graph (1) 		
	• Use of $Q=Q_0 e^{-t/RC}$ with their values for Q_0 , Q and t (1)		
	• $C = 0.0195 - 0.0196 \text{ mF (1)}$		
	OR		
	• Q0 = 7 (mC) read from graph (1)		
	• $Q=3.5$ (mC) when $T_{1/2}=12.3$ (ms) (1)		
	• Use of $T_{1/2} = RC \ln 2$ (1)		4
	• $C = 0.0195 - 0.0196 \text{ mF (1)}$		4

Question Number	Acceptable answers		Additional guidance	Mark
	• Use of $V = Q/4\pi\varepsilon_0 r$	(1)	allow for $Q = 2$ or 79, accept $V = kQ/r$	4
	Conversion MeV to J	(1)		
	• Use of $V = W/Q$	(1)	Must use $e = 1.6 \times 10^{-19}$ C to convert	
• r	• $r = 3.0 \times 10^{-14} \text{ m}$	(1)	atomic number to C	
			Example of calculation: $7.7 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{J eV}^{-1}$ $= 8.99 \times 10^9 \text{N m}^2 \text{C}^{-2} \times 2 \times 79 \times (1.6 \times 10^{-19} \text{ C})^2 \div r$ $r = 2.27 \times 10^{-7} \div 7.7 \times 10^6$ $r = 2.95 \times 10^{-14} \text{ m}$	

Q3.

Question Number	Acceptable Answer		er	Additional Guidance	Mark
		Use of Q = CV	(1)	Example of calculation: $Q=CV = 56 \times 10^{-6} \text{ F} \times 2500 \text{ V} =$	
	•	Use of $Q = Q_0 e^{-t/RC}$	(1)	0.14 C	
	•	$Q/Q_0=0.01$	(1)	$ \ln\left(\frac{Q}{Q_0}\right) = e^{-\tau/RC} $	
	•	t = 11.6 ms	(1)	$\ln(0.01) = -\frac{t}{45\Omega \times 56 \times 10^{-6} \mathrm{F}} :: t = 0.0116 \mathrm{s}$	
	•	Use of $I = \frac{Q}{t}$	(1)	$I = \frac{Q}{t} = \frac{0.14s}{0.0116s} = 12.1A$	
	•	<i>I</i> = 12 A	(1)		(6)

Question Number	Answer		Marl
(a)(i)	Capacitor, resistor, supply and switch all in series (ignore voltmeter) Voltmeter directly across capacitor	(1) (1)	2
(a)(ii)	Or graph can be plotted directly/automatically Or simultaneous reading of t and V can be taken Or idea that people can't record quickly enough, (treat as neutral accuracy, precision misreading or human	(1)	1
(1-)	reaction time) Use of $C = Q/V$	(1)	
(b)	$Q = 5.0 \times 10^{-4} \mathrm{C}$	(1) (1)	2
	Example of calculation $Q = 100 \times 10^{-6} \text{ F} \times 5.0 \text{ V}$ $Q = 5.0 \times 10^{-4} \text{ C}$		
(c)(i)	Use of $I = \Delta Q / \Delta t$ e.c.f their value of C from (b) I = 0.05 A (accept recalculation of Q using $V = 4.90 \text{ or } 4.95 \text{ V}$)	(1) (1)	2
	Example of calculation $I = 5.0 \times 10^{-4} \text{ C} / 10 \times 10^{-3} \text{ s}$ I = 0.05 A		
(c)(ii)	tangent drawn at t = 0 $\Delta V / \Delta t = 2000 - 3300 \text{ V s}^{-1}$ Initial current = 0.22 - 0.28 A (MP2 & 3 can be scored even if no tangent drawn) (No credit for exponential calculation)	(1) (1) (1)	3
	Example of calculation $\Delta V / \Delta t = 1.1 \text{ V} / 0.5 \text{ ms} = 2200 \text{ V s}^{-1}$ $I = (\Delta V / \Delta t) \times \text{C}$ $I = 2200 \text{ V s}^{-1} \times 100 \times 10^{-6} \text{ F}$ I = 0.22 A		
(c)(iii)	Use of $V = IR$ using answer from (ii) correct evaluation of R (5V used with current range in (ii) gives	(1) (1)	2
	18 - 23 Ω) Example of calculation $5 \text{ V} = 0.22 \text{ A} \times R$	(-)	
	$R = 23 \Omega$		
	Total for question		12