Practice Question Set For A-Level

**Subject: Physics** 

Paper-1 Topic: 7\_ Electric Field 2



Name of the Student:\_\_\_\_\_

Max. Marks: 26 Marks

Time: 26 Minutes

Mark Schemes

## Q1.

| Question<br>Number | Answer                                                                                                                                                                     |                   | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------|
| (a)                | Use of $Q = CV$<br>Q = 0.18  C                                                                                                                                             | (1)<br>(1)        | 2    |
|                    | Example of calculation<br>$Q = 150 \times 10^{-6} \text{ F} \times 1200 \text{ V}$<br>Q = 0.18  C                                                                          |                   |      |
| (b)                | Use of $W = \frac{1}{2} CV^2$ Or of $W = \frac{1}{2} QV$ Or of $W = \frac{1}{2} Q^2/C$<br>W = 110  J<br>Allow ecf from (a) if $\frac{1}{2} QV$ or $\frac{1}{2} Q^2/C$ used | (1)<br>(1)        | 2    |
|                    | Example of calculation<br>$W = \frac{1}{2} \times 150 \times 10^{-6} \text{ F} \times (1200 \text{ V})^2$<br>W = 108  J                                                    |                   |      |
| (c)(i)             | $R = 86 (\Omega)$                                                                                                                                                          | (1)               | 1    |
|                    | Example of calculation $R = V/I = 1200 \text{ V} / 14 \text{ A}$ $R = 85.7 \Omega$                                                                                         |                   |      |
| (c)(ii)            | $Q = 0.25 Q_0$ Or $Q = 0.045$ C<br>Use of $RC$ (0.013 s)<br>Use of $Q = Q_0 e^{tRC}$ to give $t = 0.018$ s<br>(show that value will give $t = 0.019$ s)                    | (1)<br>(1)<br>(1) | 3    |
|                    | [ Use of ln 4 gives the correct answer if the – sign is ignored, scores 1 for use of $RC$ use of $^{3}4Q \rightarrow 3.7 \times 10^{-3}$ s scores 1 mark]                  |                   |      |
|                    | Or<br>Use of $RC$<br>Use of $2 \times 0.69 \times RC$<br>t = 0.018  s                                                                                                      |                   |      |
|                    | Example of calculation $Q = 0.25 Q_0$ $Q = Q_0 e^{-t/RC}$ $0.25 Q_0 = Q_0 e^{-t/RC}$                                                                                       |                   |      |
|                    | $\ln (0.25) = -t/(86 \Omega \times 150 \times 10^{-6} \text{ F})$<br>t = 0.0178  s                                                                                         |                   |      |

| (c)(iii) | Same charge (flows for shorter time)  OR |     |   |
|----------|------------------------------------------|-----|---|
|          | (Same charge flows for) shorter time     | (1) | 1 |

Q2.

| Question<br>Number | Acceptable answers                                                                                                                   | Additional guidance                                                                                     | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|
| i                  | • Use of $InV = InV_o - \frac{t}{RC}$ (1) • Substitution $V = 2.0 \text{ V}$ and $V_o = 8.0 \text{ V}$ (1) • $t = 5.6(1) \text{ ms}$ | Rearrange to In $4 = t / 2700 \Omega \times 1.5 \times 10^{-6} F$ Example of calculation                | 3    |
| ii                 | • Use of $W = \frac{1}{2} CV^2$ (1)<br>• $W = 3.0 \times 10^{-6} \text{ J}$ (1)                                                      | $W = \frac{1}{2}1.5 \times 10^{-6} \text{ F} \times 2^{2} \text{ V}^{2} = 3.0 \times 10^{-6} \text{ J}$ | 2    |

## Q3.

| Question<br>Number | Answer                                                                                                                    |     | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----|------|
| (a)                | At least three vertical lines spread over symmetrically over more than half of the plate length and touching both plates. | (1) |      |
|                    | (ignore edge ones that might curve) All equispaced and parallel [don't allow gaping to avoid oil drop]                    | (1) |      |
|                    | Arrow pointing downwards                                                                                                  | (1) | 3    |
| (b)                | Negative / - / -ve<br>( negative and/or positive does not get the mark)                                                   | (1) | 1    |

|         | Total for question                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          | 12 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----|
| (d)(ii) | Answer to (d)(i) divided by e 3 electrons Or sensible integer number less than 500 (answers with very large numbers of electrons can get MP1 only)  Example of calculation Number of electrons = 4.62 × 10 <sup>-19</sup> C / 1.6 × 10 <sup>-19</sup> C Number = 2.9 i.e. 3 electrons.                                                                                                                                                              | (1)                      | 2  |
| (4)(ii) | (E = 255 000 (V m <sup>-1</sup> ) scores MP1 & 2.<br>unit conversion missed $\rightarrow Q = 4.62 \times 10^{-17}$ C scores MP1 & 3<br>if V is halved $\rightarrow Q = 9.23 \times 10^{-19}$ C scores MP1 ,2 & 3)<br>Example of calculation<br>E = V/d<br>F = EQ = mg<br>Q = mg / E = mgd/V<br>$Q = (1.20 \times 10^{-14} \text{ kg} \times 9.81 \text{m s}^{-2} \times 0.02 \text{ m}) / (5100 \text{ V})$<br>$Q = 4.62 \times 10^{-19} \text{ C}$ | (1)                      |    |
| (d)(i)  | E = 5100  V/2  cm<br>Conversion of cm to m<br>Use of $QE = mg (1.18 \times 10^{-13} \text{ kg})$<br>$Q = 4.6 \times 10^{-19} \text{ C}$                                                                                                                                                                                                                                                                                                             | (1)<br>(1)<br>(1)<br>(1) | 4  |
| (c)     | Upward force labelled: Electric (force) Or Electrostatic (force) Or force due to electric field Or electromagnetic (force) [do not accept repulsive/attractive force. If EQ used, the symbols must be defined] Downward force labelled: mg, weight, W, gravitational force (for both marks the lines must touch the drop and be pointing away from it. Ignore upthrust if drawn but one mark lost for each extra force added)                       | (1)                      | 2  |