Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Electric Field 2

Name of the Student:

Max. Marks: 9 Marks

Time: 9 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Use of $V = Q/4\pi\varepsilon_0 r$	(1)	Example of calculation $7.30 \times 10^{-13} \text{ J} =$	4
	 Identifies number of (positive) charges for alpha or gold nucleus 	(1)	r /^2/1.0/10	C
	• Use of $W = VQ$	(1)	$r = 4.98 \times 10^{-14} \mathrm{m}$	
	 r = 5 × 10⁻¹⁴ m so textbook statement is correct Or V = 7.27 × 10⁻¹³ J so textbook statement is correct (MP4 dependent on MP1) 	(1)		
(ii)	• Use of $E_k = \frac{p^2}{2m}$	(1)	Accept Use of $Ek = \frac{1}{2}mv^2$ and $p = mv$	3
	 Converts atomic mass to kg p = 9.9 × 10⁻²⁰ kg m s⁻¹ 	(1) (1)	Example of calculation $7.30 \times 10^{-13} \text{ J} = p^2/2 \times 4 \times 1.66 \times 10^{-27} \text{ kg m s}^{-1}$	g

Q2.

Question Number		Acceptable answers		Additional guidance	Mark
(i)	•	Use of $E = V/d$	(1)	Example of calculation $3 \times 10^6 \text{ V m}^{-1} = V / 0.002 \text{ m}$	2
	•	V = 6000 V	(1)	V = 6000 V	
(ii)	•	(A spark is) a current (drawn from the supply)	(1)		3
				Accept "lost volts" are present/increases	
	•	A potential difference is produced across the internal resistance		500	
		of the supply	(1)	Accept reduces the terminal potential difference which is shown on the	
	•	According to $V = E - Ir$ V decreases Or (the decrease in V) is		voltmeter	
		large because the internal resistance is large	(1)		