Practice Question Set For A-Level

Subject: Physics

Paper-1 Topic: 7_ Magnetic Field

Name of the Student:

Max. Marks : 20 Marks Time : 20 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of R=\rho l/A Using A=0.5×28 (×10⁻⁶ m²) Use of V=IR I = 22 (mA) 	(1) (1) (1) (1)	Example of calculation $R = \frac{1.6\Omega \text{m} \times 0.6 \times 10^{-3} \text{ m}}{0.5 \times 10^{-3} \text{m} \times 28 \times 10^{-3} \text{m}}$ $R = 68.6\Omega$ $1.5V = I \times 68.6\Omega$ $I = 1.5V / 68.6\Omega$ $I = 0.022A = 22\text{mA}$	4

Question Number	Acceptable answers		Additional guidance	Mark
(ii)	 Use of F=BIL ecf values from (i) Force = 5.3 × 10⁻⁶ N 	(1)	Use of show that values gives $4.8 \times 10^{-6} \mathrm{N}$ Example of calculation $F = 0.40 \mathrm{T} \times 0.022 \mathrm{A} \times 0.6 \times 10^{-3} \mathrm{m}$ $F = 5.3 \times 10^{-6} \mathrm{N}$	2

Question Number	Answer		Mark
(a)	Use of N Φ = NBA Φ = 1.2 × 10 ⁻³ Wb (accept T m ²)	(1) (1)	2
	Example of calculation $\Phi = 200 \times 3.0 \times 10^{-2} \text{ T} \times 2.0 \times 10^{-4} \text{ m s}^{-1}$ $\Phi = 1.2 \times 10^{-3} \text{ Wb}$		
(b)(i)	Time = 0.125 (s) Or Time = 1/8 (s)	(1)	1
	Use of $\varepsilon = (-)d(N\Phi)/dt$ $\varepsilon = (-)9.6 \times 10^{-3} \text{ V (ecf } N\Phi \text{ from (a))}$	(1) (1)	3
	Example of calculation $\varepsilon = 1.2 \times 10^{-3} \text{ Wb } / 0.125 \text{ s}$ $\varepsilon = 9.6 \text{ mV}$		
(b)(ii)	Maximum values when coil is horizontal Or maximum values when the coil is parallel to the magnetic field Or minimum value when coil vertical		
	Or minimum value when the coil is perpendicular to the magnetic field	(1)	
	e.m.f. determined by rate of change of flux Or see $\varepsilon = (-)d(N\Phi)/dt$	(1)	
	Greatest rate of change of flux as coil goes through horizontal Or greatest rate of change of flux occurs when θ =90°		
	Or least rate of change of flux as it goes through vertical Or least rate of change of flux occurs when θ =0°	(1)	3
(b)(iii)	Peaks would be smaller amplitude Or maximum e.m.f. smaller Rate of change of flux (linkage/cutting) less	(1) (1)	2
(c)(i)	Energy required to turn generator	(1)	
	Transferred from kinetic energy of the car	(1)	2
(c)(ii)	Greater rate of kinetic energy transfer/loss at high(er) speeds At slower/low speeds there is less/negligible braking effect (so car	(1)	
	would not fully stop)	(1)	2
	Total for question		14