Practice Question Set For A-Level

Subject : Physics

Paper-2 Topic: 11_Nuclear Radiation

(C)	Merit Minds www.merit-minds.com
Exam Prepara	ation and Free Resources

Name of the Student:	

Max. Marks : 20 Marks Time : 20 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Use of $\ln 2 = \lambda t_{1/2}$ • $\lambda = 4.92 \times 10^{-18} \text{ (s}^{-1}\text{)}$	(1) (1)	Example of calculation $\lambda = \ln 2 / 1.41 \times 10^{17} \text{ s}$ = 4.92 × 10 ⁻¹⁸ s ⁻¹	2
(ii)	 Calculate rate = counts / time Subtract background radiation Use of A = - λN Calculates N × atomic mass Calculates percentage by mass Answer = 0.17% (ecf for λ from (a)(i)) 	(1) (1) (1) (1) (1)	Example of calculation background rate = $525 / (10 \times 60)$ s = 0.875 s ⁻¹ vase count rate = $3623 / (5 \times 60)$ s = 12.077 s ⁻¹ corrected rate = 11.2 s ⁻¹ for whole vase = 11.2 s ⁻¹ × 0.0177 m ² / 6.36×10^{-5} m ² = 3117 s ⁻¹ $N = 3117 / 4.91 \times 10^{-18}$ s ⁻¹ = 6.348×10^{20} Mass = $6.348 \times 10^{20} \times 238 \times 1.66 \times 10^{-27}$ kg = 2.51×10^{-4} kg Percentage = 2.51×10^{-4} kg × $100 / 0.149 = 0.17\%$	6
(iii)	Max 2 from: Alpha particles could have been absorbed by the glass Alpha particles will be emitted in all directions, not just towards the detector Some alpha particles could have been detected from other parts of the vase The count could include radiation from decay products	(1) (1) (1) (1)		2
	Some alpha particles could be absorbed by the GM tube window			07

Question Number	Acceptable Answer		Additional Guidance	Mark
	A description that makes reference to the following: • (Remove the source and) record background count for specified time and subtract from equivalent quantity • Divide by time to give a count rate.	(1) (1)	There needs to be two clear steps. Subtract a count from a count, or a count rate from a count rate and divide a count by time to obtain a count rate.	2

Q3.

Question Number	Acceptable answers	Additional guidance	Mark
	• correct values of A and Z for a and β	Example of calculation: $^{226}_{88}$ Ra \rightarrow $^{206}_{82}$ Pb + x^{4}_{2} a + y^{0}_{-1} β 226 - 206 = 4 x	
	• 5 a	x = 5 88 - 82 - (5 × 2) = - y	
	• 4 β	y = 4 $^{226}_{88}$ Ra \rightarrow $^{206}_{82}$ Pb + $^{4}_{2}$ α + $^{4}_{-1}$ β	(3)

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
	 attempt to determine mass difference between radium and radon-plus-alpha conversion to kg Use of ΔE = c²Δm Use of 1.6 × 10⁻¹⁹ factor Answer = 4.87 (MeV) 	(1) (1) (1) (1)	$\Delta m = 225.97713u - (221.97040u + 4.00151 u)$ = $5.22 \times 10^{-3} u = 5.22 \times 10^{-3} \times 1.66 \times 10^{-27}$ kg = 8.67×10^{-30} kg $\Delta E = c^2 \Delta m = (3 \times 10^8 \text{ m})^2 \times 8.67 \times 10^{-30}$ kg = $7.80 \times 10^{-13} \text{ J}$ $\Delta E \text{ in MeV} = 7.80 \times 10^{-13}$ $J \div 1.6 \times 10^{-19} \text{ C}$ = 4.87 MeV	5