Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 11_Nuclear Radiation

Name of the Student:	

Max. Marks: 18 Marks

Time: 18 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer		Add	itional Guidance		Mark
*	This question assesses a student's ability to show a coherent and logical structured answer Marks are awarded for indicative content and for how the answer is structured and shows lines of reasoning. The following table shows how the marks should be awarded for indicative content.					
	with linkage and fully-sustained reasoning.	Number of indicative marking points seen in	Number of marks awarded for indicative marking points	Arrewar shares a sobservent and	marks mounted for smoother of another of another of another and statistical line of transming.	
	Indicative content:	answer 6 5–4	4 3	logical structure with linkages and fully sumained lines of reseasing demonstrated throughout	*	
	IC1 There is a fixed	3-2 1	2	Ammer is partially stratured with some linkages and lines of reasoning	1	
	probability	0	0	Answer has no linkages between points and is unstructured	0	
	(\lambda) of an individual nucleus	THE RESERVE OF THE PROPERTY OF		e sum of marks for in structure and lines of		
		IC points	IC mark	Max linkage mark	Max final mark	
	undergoing decay (in the	6	4	2	6	
	next second)	5	3	2	5	
		4	3	1	4	
	IC2 For a sample	3	2	1	3	
	with large	2	2	0	2	
	number of	1	1	0	1	
	unstable nuclei there is a predictable	0	0	0	0	
	pattern IC3 The fraction of nuclei decaying in the next second is equal to the decay					

	Hence the number of nuclei decaying (in the next second) depends on the number of (unstable) nuclei Or activity = \(\frac{2N}{N} \) The number of unstable nuclei decreases	
IC6	exponentially (with time) Or number of (unstable) nuclei = $N_0e^{-\lambda t}$ So the rate of decay decreases exponentially (with time) Or rate of decay = $A_0e^{-\lambda t}$	

Question Number	Answer		Mark
(a)	Activity is the rate of decay (of radioactive nuclei)		
	Or the number of decays in a second	(1)	1
(b)	Use of $\lambda t_{1/2} = 0.693$	(1)	
	Use of $A = -\lambda N$	(1)	82
	$N = 1.9 \times 10^{12}$	(1)	3
	Example of calculation:		
	$\lambda = \frac{0.693}{3.89 \times 10^8 \text{ s}} = 1.78 \times 10^{-9} \text{ s}^{-1}$		
	$N = \frac{3450 \mathrm{s}^{-1}}{1.78 \times 10^{-9} \mathrm{s}^{-1}} = 1.94 \times 10^{12}$		
(c)(i)	Use of $A = A_0 e^{-\lambda t}$	(1)	
	Conversion between seconds and years	(1) (1)	3
	t = 41 (years)	(1)	
	Example of calculation:		
	$0.1 = e^{-(1.78 \times 10^{-9} s^{-1})t}$		
	$t = 1.29 \times 10^9 \text{ s}$		
	$t = 1.29 \times 10^9 \text{ s} / (365 \times 24 \times 3600 \text{ s y}^{-1}) = 41 \text{ y}$		
(c)(ii)	This is a very long time and so:		
	The sample's activity will stay approx. constant for the procedure	(1)	
	Or tritium may be in the body long enough for damage to be caused	(1)	-
	Or the sample can be prepared well in advance of the procedure	(1)	1
	Total for question		8

Question Number	Acceptable answers	Additional guidance	Mark
	An explanation that makes reference to the following points:	Alternative approach:	4
	• Use of $\lambda = \frac{\ln 2}{t_{1/2}}$ (1)	$\lambda_{\mathrm{Ac}} = \frac{\mathrm{ln}2}{\mathrm{10}}$ $A_{\mathrm{Ac}} = \lambda_{\mathrm{Ac}} N = \frac{\mathrm{ln}2}{\mathrm{10}} \times N$	
	(Hence) initial activity of Ac is 50% that of Bi	After 10 days $A_{Ac} = \frac{1}{2} \times \frac{\ln 2}{10} \times N = \frac{\ln 2}{20} \times N$	
	Or (Hence) decay constant of Ac is 50% that of Bi (1)	$\lambda_{\rm Bi} = \frac{{\rm ln}2}{5}$ $A_{\rm Bi} = \lambda_{\rm Bi} N = \frac{{\rm ln}2}{5} \times N$	
	 Applies one or two half lives to show fraction of initial activity/number after 10 days for one isotope 	After 10 days $A_{\text{Bi}} = \frac{1}{2} \times \frac{1}{2} \times \frac{\ln 2}{5} \times N = \frac{\ln 2}{20} \times N$	
	Or Use of exponential decay equation to show fraction of initial activity/number after 10 days for one isotope (1)	$A_{Ac} = A_{Bi}$	
	Demonstrates quantitatively that both	MP2 can be awarded for use of both decay constants in exponential decay equations	
	isotopes have the same activity (1)	All four marks may be awarded for a full mathematical demonstration, e.g.:	
		$\lambda_{Ac} = \frac{\ln 2}{10} = 0.0693 \text{ day}^{-1}$ $A_{Ac} = \lambda_{Ac} N = 0.0693 \text{ day}^{-1} \times N$	
		10 days: $A_{Ac} = \frac{1}{2} \times 0.0693 \text{ day}^{-1} \times N = 0.0345 \text{ day}^{-1} \times N$	
		$\lambda_{\text{Bi}} = \frac{\ln 2}{5} = 0.139 \text{ day}^{-1}$ $A_{\text{Bi}} = \lambda_{\text{Bi}} N = 0.139 \text{ day}^{-1} \times N$	
		10 days: $A_{\text{Bi}} = \frac{1}{2} \times \frac{1}{2} \times 0.139 \text{ day}^{-1} \times N = 0.0345 \text{ day}^{-1}$	
		$A_{Ac} = A_{Bi}$	