Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 11_Nuclear Radiation

Name of the Student:	

Max. Marks : 26 Marks Time : 26 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers	Additional guidance	Mark
	Because activity is small (and therefore difficult to measure)	For activity accept, e.g. count rate, change in activity, decay rate, change in mass	1
	Or because (significant) change in activity would take a long time (to measure) (1)	For change in activity accept e.g. number of decays, change in mass, change in N,	

Q2.

Question Number	Acceptable answers		Additional guidance	Mark
	An explanation that makes reference to the following points:	(1)		2
	 t_{1/2} is larger, λ will be smaller N = N₀e^{-λt} so the calculated value of time would be greater 	(1)		
	MP2 dependent upon MP1			
	If half-life is larger, it would take more time for the ratio $\frac{N_S}{N_R}$ to reach the current value			
	Hence the rock would be older than originally determined. MP2 dependent upon MP1			

Question Number	Acceptable answers		Additional guidance	Mark
(i)	• Use of $\ln 2 = \lambda t_{1/2}$	(1)	Example of calculation $\lambda = \ln 2 / 432 \text{ years} = 1.6 \times 10^{-3} \text{ y}^{-1}$	
	• Use of $A = A_0 e^{-\lambda t}$	(1)	$\lambda = \ln 2 / 432 \text{ years} = 1.6 \times 10^{-3} \text{ y}^{-1}$ $A / A_0 = e^{-(1.6 \times 10^{-3} \text{ y}^{-1} \times 34 \text{ y})}$ $(A / A_0) \times 100 \% = 94.7 \%$	
	 Expected percentage of A₀ = 95 % 	(1)	(Z-1-1-)	3

(ii)	Beta is only emitted after the decay of neptunium to protactinium		
	(1) Or Americium and neptunium only emit alpha	Accept amount for proportion	
	(1)		
	The half-life of <u>neptunium</u> is very long		
	(1)		
	There will only be a very small proportion of protactinium (relative to americium and neptunium), so the suggestion is incorrect		3
	Or Only 5% of the americium has decayed so the proportion of protactinium is very small, so the suggestion is incorrect		

Q4.

Question Number	Acceptable answers	Additional guidance	Mark
(i)	Point particles Particles have negligible volume (compared to their container) Negligible forces between particles (except during a collision) Range of molecular forces small (in comparison to average separation) Duration of collisions negligible (in comparison to time between them) Newtonian mechanics applies Particles moves with uniform velocity between collisions Elastic collisions Particles move with (constant) random motion	Accept molecules for particles (1)	1

(ii)	 States pV = NkT or pV = 1/3 Nm<c²> (1) Suitable algebra to show ½ m<c²> = 3/2 kT</c²> </c²> 		2
(iii)	 Use of a.m.u. to determine particle mass (1) Use of ½ m<c²> = 3/2 kT with T in K</c²> 	Example of calculation Mass = $28 \times 1.66 \times 10^{-27}$ kg = 4.65×10^{-26} kg $\frac{1}{2} \times 4.65 \times 10^{-26}$ kg $< c^2 > = 3/2 \times 1.38 \times 10^{-23}$ J K ⁻¹ × 393 K c = $\sqrt{349900}$ = 590 m s ⁻¹	3
	(1) • rms speed = 590 m s ⁻¹		37.0

Q5.

Question Number	1000	able Answer	Additional Guidance	Mark
		Top line correct		
		(1)	$^{220}_{86}\text{Rn} \rightarrow ^{216}_{84}\text{Po} + ^{4}_{2}\alpha$	2
	•	Bottom line correct	8757	
		(1)		

Q6.

Question Number	Answer		Mark
(a)	Activity is the rate of decay of (unstable) nuclei Or activity is the number of (unstable) nuclei that decay in unit time	(1)	1

(b)(i)	Background radiation/count will increase the recorded count	235	935
	Or background count must be subtracted from the recorded count	(1)	1
	Or background radiation contributes systematic error to the count		
	[Do not accept "to correct for background radiation"]		
(b)(ii)	Radioactive decay is a random process (so count for a fixed period will vary)	(1)	
	[Ignore references to spontaneous, accurate, reliable]	2000	
	Idea that repeating enables a mean/average value to be calculated	(1)	2
(b)(iii)	ln 2		
	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$ [allow 2.5 Bq for A ₀ here; allow use of $N = N_0 e^{-\lambda t}$]	(1)	
	A = 0.47 Bq	(1)	3
	[Allow calculation of number of half lives elapsed		
	and use of $A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{2}}$ for mp1 and mp2]		
	Example of calculation:		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{8.0 \mathrm{d}} = 0.0866 \mathrm{d}^{-1}$		
	$A = A_0 e^{-\lambda t} = 6.38 \times e^{-0.0866 d^{-1} \times 30 d} = 6.38 \text{Bq} \times 0.074 = 0.47 \text{Bq}$		
(b)(iv)	Idea that people have to be close to or ingest seaweed for any degree of risk		
	Or β particles are moderately ionising	(1)	
	Or β particles can enter body through the skin	J 100 35	
	The half-life is short Or after a month the activity has decayed to negligible levels	(1)	2
	Or the radioisotope doesn't remain in the seaweed for very long	200000	
	Total for Question		9