Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic: 13_Oscillations

Name of the Student:

Max. Marks: 23 Marks

Time: 23 Minutes

Mark Schemes

Q1.

Question Number	Answer		Mar
(a)(i)	Use of Newton's 2 nd law (F = ma) with F = -kx Acceleration/force is in opposite direction to the displacement from the equilibrium position	(1)	2
	Or acceleration/force is (always) towards the equilibrium/undisplaced/rest position	(1)	
	Example of calculation: m a = -k x		
397355	$a = -\frac{k}{m}x$ See $a = -\omega^2 x$	93.000	
(a)(ii)	See $a = -\omega^2 x$ Compare with $a = -\frac{k}{m}x$ to give $\omega^2 = \frac{k}{m}$	(1)	
		(1)	
	Substitute for ω using $\omega = \frac{2\pi}{T}$	(1)	3
	Example of calculation: $a = -\omega^2 x$ and $a = -\frac{k}{m}x$		
	$\omega^2 = \frac{k}{m}$ and $\omega = \frac{2\pi}{T}$		
	$\left(\frac{2\pi}{T}\right)^2 = \frac{k}{m} \therefore T = 2\pi \sqrt{\frac{m}{k}}$		
(b)(i)	$\left(\frac{2\pi}{T}\right)^2 = \frac{k}{m} \therefore T = 2\pi\sqrt{\frac{m}{k}}$ Use of $T = 2\pi\sqrt{\frac{m}{k}}$	(1)	
	Use of $f = \frac{1}{T}$	(1)	
	f = 0.59 Hz	(1)	3
	Example of calculation:		
	$T = 2\pi \sqrt{\frac{3.5 \times 10^5 \text{ kg}}{4.8 \times 16^6 \text{ N m}^{-1}}} = 1.7 \text{ s}$		
	$f = \frac{1}{T} = \frac{1}{1.7 \text{s}} = 0.588 \text{Hz}$		

(b)(ii)	Correct shape Single sharp peak With the peak labelled at 0.6 Hz	(1) (1) (1)	3
	0 0.6 2 4 f/Hz		
(b)(iii)	(Max) <u>amplitude</u> of oscillation is reduced as energy is transferred from the mass-spring system and then dissipated (in the surroundings)	(1) (1) (1)	3
	Total for question		14

Question Number	Answer		Mark
(a)(i)	Calculation of average time period [accept average time for 10T] Use of $f = \frac{1}{T}$	(1) (1)	
	f = 1.5 Hz	(1)	3
	Example of calculation $T = \frac{t_1 + t_2 + t_3}{30} = \frac{(6.2 + 6.6 + 6.9)s}{30} = 0.657 s$ $f = \frac{1}{0.657 s} = 1.52 \text{ Hz}$		
(-)(2)			
(a)(ii)	Force (or acceleration): proportional to displacement from equilibrium position always acting towards the equilibrium position Or always in the opposite direction to the displacement	(1)	2
	[accept rest/centre point for "equilibrium position"] [both marks can be gained from an equation with terms clearly defined including a correct reference to the negative sign]		•
(b)	There is (large) drag force [accept air resistance for drag]	(1)	
	Producing a deceleration Or the oscillation is (heavily) damped Or energy is transferred/removed from the system [e.g. transferred to the surroundings.] [Do not accept "lost" for "transferred"]	(1)	2
(c)	Resonance Driven at a frequency equal/near the natural frequency of the wings [accept their answer to (a) as a numerical value]	(1) (1)	2
	[for "driven" accept "forced/made to oscillate"]		