Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:

Max. Marks: 19 Marks

Time: 19 Minutes

Mark Schemes

Q1.

Question Number	Acceptable answers		Additional guidance	Mark
(b)	An explanation that makes reference to the following points: Weight of blanket decreases as it dries Tension in line decreases So stress decreases and Young modulus is constant so strain decreases	(1) (1) (1)	Allow mass for weight	
	extension decreases Or line gets shorter height of the blanket from the ground increases	(1) (1)	MP4 dependent on MP3 MP5 dependent on MP4	5

Question Number		Acceptable Answers	Additional guidance	Mark	
	 Comment that a straight line graph through the origin (up to 5 N) is consistent with Hookes law / F ∝ x 		(1)		
	•	Comment that indicates that the max extended length 400 mm is not covered by the student's results	(1)		
	•	Use of $\Delta E_{el} = \frac{1}{2} F \Delta x$ and $F = k \Delta x$ with $\Delta x = 0.4$ m		Example of calculation $k = 21 \pm 1.05 = 19.95 - 22.05 \text{ N m}^{-1}$	
		Use of $\Delta E_{el} = \frac{1}{2}F\Delta x$ using extrapolated readings from graph	(1)	$F = k\Delta x = 20 \text{ N m}^{-1} \times 0.4 \text{ m} = 8.0 \text{ N}$	
	•	Candidate's calculated energy value compared with 1.6 J and valid conclusion given	(1)	$\Delta E_{el}(\text{max}) = \frac{1}{2} \times 8.0 \text{ N} \times 0.4 \text{ m} = 1.6 \text{ J}$	
	Either				
	•	Use of %U to determine the range in k (manufacturer's)	(1)		
	•	Comparison of values for k with conclusion consistent with candidates calculated value	(1)		6
	Or				
		Calculates % difference between candidate's calculated value for k and 21 N m ⁻¹	(1)		
	•	Comparison of calculated % difference with 5% and conclusion made	(1)		

Question Number	Acceptable answers		Additional guidance	Mark
(a)	• use of $\rho = m/V$ and $W = mg$ to calculate upthrust	(1)	Example of calculation $m_{displaced} = 1.0 \times 10^{3} \text{ kg m}^{-3} \times 8.0 \times 10^{-6} \text{ m}^{-3}$ = $8.0 \times 10^{-3} \text{ kg}$	
	use of downward force of lid = upthrust – weight of diver	(1)	$U = 8.0 \times 10^{-3} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.0785 \text{ N}$ $W = 0.0059 \text{ kg} \times 9.81 \text{ N kg}^{-1} = 0.0579 \text{ N}$ Lid force = 0.0785 N - 0.0579 N	
	downward force of lid = 0.021 (N)	(1)	= 0.0206 N	3

 use of force of lid = Vρg volume of air = 8.0 × 10⁻⁶ m⁻³ - their value volume of air = 5.9 × 10⁻⁶ (m³) Or use of upthrust on diver = weight of diver use of upthrust = Vρg volume of air = 5.9 × 10⁻⁶ (m³) 	(1) (1) (1) (1) (1)	Example of calculation volume = 0.0206 N ÷ 9.81 N kg ⁻¹ ÷ 1.0 × 10 ³ kg m ⁻³ = 2.1 × 10 ⁻⁶ m ⁻³ new volume of air = 8.0 × 10 ⁻⁶ m ⁻³ - 2.1 × 10 ⁻⁶ m ⁻³ = 5.9 × 10 ⁻⁶ m ³	3
	 volume of air = 8.0 × 10⁻⁶ m⁻³ - their value volume of air = 5.9 × 10⁻⁶ (m³) Or use of upthrust on diver = weight of diver use of upthrust =V ρg 	 volume of air = 8.0 × 10⁻⁶ m⁻³ - their value volume of air = 5.9 × 10⁻⁶ (m³) (1) Or use of upthrust on diver = weight of diver use of upthrust =Vρg (1) 	• use of force of $lid = V \rho g$ (1) • volume of air = $8.0 \times 10^{-6} \text{ m}^{-3}$ - their value • volume of air = $5.9 \times 10^{-6} \text{ (m}^{3)}$ (1) Or • use of upthrust on diver = weight of diver • use of upthrust = $V \rho g$ (1)

Question Number	Acceptable answers	Additional guidance	Mark
(c)	• use of $pV = \text{constant}$ (1 • $p = 1.4 \times 10^5 \text{ Pa}$ (1	Example of calculation $p_1 \times V_1 = p_2 \times V_2$ $p_2 = 1.01 \times 10^5 \text{ N m}^2 \times 8.0 \times 10^{-6} \text{ m}^{-3} / 5.9 \times 10^{-6} \text{ m}^3$ $p = 1.37 \times 10^5 \text{ Pa}$	2