Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:_____

Max. Marks: 17 Marks

Time: 17 Minutes

Mark Schemes

Q1.

Question Number	I MECANTANIA ANGMATO			Additional guidance	
	•	states wavelength = 1.2 cm	(1)	Example of calculation: $\lambda = 4.8 \times 0.25 \text{ cm} = 1.2 \text{ cm}$	
	•	use of E = stress / strain	(1)	$A = nd^{2} / 4$ = $n(3.6 \times 10^{-6} \text{ m})^{2} / 4$ = $1.012 \times 10^{-11} \text{ m}^{2}$	
	•	use of $A = \pi d^2/4$	(1)	stress = strain × E = 9.7 × 10 ⁻⁹ × 1.2 × 10 ⁹ N m ⁻²	
	•	use of stress = F/A	(1)	= 11.64 N m ⁻² T = F	
	•	use of $v = \sqrt{(T/\mu)}$	(1)	= stress \times A = 11.64 N m ⁻² \times 1.012 \times 10 ⁻¹¹ m ² = 1.18 \times 10 ⁻¹⁰	
	•	use of $v = f\lambda$ with any two of the stated / measured / calculated values of v , f or λ to calculate the other	(1)	N $v = \sqrt{(\div)} = \sqrt{8.92 \times 10^{-3}} = 0.094 \text{ m s}^{-1}$ Using $v = f\lambda$, $v = 7.9 \text{ Hz} \times 0.012 \text{ m} = 0.0912 \text{ m s}^{-1}$	7
	•	comparison of this calculated value of v , f or λ with the value obtained another way	(1)	Agree to within 3%, so suggests consistent	

Question Number	Acceptable Answe	T	Additional guidance	Mark
(i)	• Use of $V = \frac{4}{3}\pi r^3$	(1)		
	• Use of $\rho = \frac{m}{v}$ and U	T = mg (1)		
	• 1.73 × 10 ⁻⁵ (N)	(1)	Example of calculation	
			$U = \frac{4}{3}\pi \left(\frac{1.5 \times 10^{-8}}{2}\right)^3 \times 997 \times 9.81$ $U = 1.73 \times 10^{-5} \mathrm{N}$	3
(ii)	• Use of $F = 6\pi r \eta v$	(1)		
	• 1.1 m s ⁻¹ (ecf from (a	a)(i)) (1)	Example of calculation	
			$1.73 \times 10^{-5} \text{ N} = 6\pi \times 0.0011 \times (\frac{1.5 \times 10^{-8}}{2})v$ $v = 1.1 \text{ m s}^{-1}$	2

Question Number	Acceptable Answers			Additional guidance	Mark
	11.5	Young modulus of steel > young modulus of wood Or steel is stiffer Or greater stress for a given strain Or less strain under the same stress	(1)	Answers must a comparison between steel and wood	
	•	So there are less changes in dimensions under a given force for steel	(1)	Accept deformation for changes in dimension	
	•	Breaking stress of steel > breaking stress of wood Or steel is stronger Or steel withstands greater forces without breaking	(1)	MP3 accept UTS steel > UTS wood	
	•	steel can withstand a larger force/weight than wood of the same (cross-sectional) area Or Under the same force/weight steel can have a smaller (cross-sectional) area than wood	(1)		5
	•	Steel coasters can be built that withstand the larger forces from faster cars Or (taller tracks can be built because) steel tracks can have smaller dimensions	(1)		