Practice Question Set For A-Level

Subject: Physics

Paper-2 Topic : 4_Materials

Name of the Student:

Max. Marks: 19 Marks

Time: 19 Minutes

Mark Schemes

Q1.

Question Number	Acceptable Answer	Additional Guidance	Mark
(a)	Use Vernier/digital calipers to measure x and/or Use Vernier/digital calipers to measure x and/or Mass of slide(s) measured using (top pan) balance/scales Repeat and determine mean for at least one measurement	 (1) (Part (a) and (b) to be marked holistically MP1 accept digital calipers for a single slide Accept Vernier calipers if it is clear that the thickness of a number of slides is being measured. To award both MP1 & 2, x, y & z must all be referred to. (1) MP4 can be awarded for a reference to averaging any of the measurements. 	4

Question Number	Acceptable Answer		Additional Guidance	Mark
(b)	Check zero error on micrometer/callipers/balance Or measure x/y/z of slide in different places Or measure thickness/mass of multiple slides	(1)	Accept 'tare' for zero error check on balance	1

Question Number	Accentable answers		Additional Guidance	Mark	
(i)	drag + weight = upthrust	(1)	Example of calculation: drag + weight = upthrust drag = upthrust - weight		
	• use of $\rho = m/V$ and $W = mg$	(1)	$6\pi \eta r v = 4\pi r^3 \rho_{\text{stout}} g/3 - 4\pi r^3 \rho_{\text{qas}} g/3$		
	• use of $F = 6\pi \eta r v$ and $V = 4/3\pi r^3$	(1)	$v = 2(\rho_{\text{stout}} - \rho_{\text{gas}})r^2g/9\eta$	3151277440	
				(3)	

Question Number	Acceptable Answers	Additional Guidance	Mark	
(ii)	low speed <u>OR</u> laminar flow <u>OR</u> not turbulent flow		(1)	

Question Number		Acceptable Answers	Additional Guidance	Mark
(iii)		use of $v = 2(\rho_{\text{stout}} - \rho_{\text{gas}})r^2g/9\eta$ (1)	Example of calculation: $v = 2 (1.007 \times 10^{3} \text{ kg m}^{-3} - 1.007 \times 10^{-3})$	
	•	use of $v = s/t$ (1)	1.223 kg m ⁻³) × (61 × 10 ⁻⁶ m) ² × 9.81 N kg ⁻¹ / 9 × 2.06 × 10 ⁻³	
		time = 29 s (1)	Pa s = 3.96 × 10 ⁻³ m s ⁻¹	
	•	comment on the difference with (1) 120 seconds OR an attempt to account for	$t = 0.115 \text{ m} / 3.96 \times 10^{-3} \text{ m s}^{-1}$ = 29 s	
		the difference	Actual time much less than the manufacturers time therefore not a valid statement <u>OR</u> reference time to reach terminal velocity <u>OR</u> there is turbulent flow	(4)

Question Number	Answer		Mark
(i)	(Stokes' law is only for) small (solid) spheres		ii:
	Or(Stokes' law is only for) laminar flow		
	Or there is turbulent flow	(1)	
	Additional/less drag due to the bubbles having a non-stationary surface		
	Or Stokes' law cannot be applied to a gas bubble because they have a non-		
	stationary surface Or sides of container too close to bubbles		
	Or volume/shape changes as it rises	(1)	2
	Of volume snape changes as it lises	(1)	- 5
* (ii)	(QWC – work must be clear and organised in a logical manner using technical terminology where appropriate)		
	Either: Resultant forces method 4 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Use of $4\pi r^3/3$ to find the volume of the sphere	(1)	
	Use $V \rho g$ to find the upthrust / weight of the bubble	(1)	
	Drag = upthrust - weight	(1)	
	Or: Stokes' law method 2 marks		
	Measure the diameter/radius of the sphere (from the photograph)	(1)	
	Calculate the (terminal) velocity using $v = s/t$ and substitute into $F = 6\pi r \eta v$	(1)	4

Q4.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of stress = F/A Use of Young modulus = stress / strain Use of strain = Δx/x Extension = 0.053 m 	(1) (1) (1) (1)	Example of calculation stress = 93.4 N / 6.6 × 10 ⁻⁷ m ² = 1.42 × 10 ⁸ N m ⁻² strain = 1.42 × 10 ⁸ N m ⁻² / 1.8 × 10 ⁹ N m ⁻² = 0.0786 extension = 0.0786 × 0.68 m = 0.053 m	4
(ii)	 Increase tension so increase wavespeed since v = √(T/μ) Or decrease μ so increase wavespeed since v = √(T/μ) v = √(T/μ	(1)		
	 Since v = f\(\lambda\) and wavelength unchanged, this increases frequency 	(1)		2